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SUMMARY
Small cell lung cancer (SCLC) is an aggressivemalignancy composed of distinct transcriptional subtypes, but
implementing subtyping in the clinic has remained challenging, particularly due to limited tissue availability.
Given the known epigenetic regulation of critical SCLC transcriptional programs, we hypothesized that sub-
type-specific patterns of DNA methylation could be detected in tumor or blood from SCLC patients. Using
genomic-wide reduced-representation bisulfite sequencing (RRBS) in two cohorts totaling 179 SCLC pa-
tients and usingmachine learning approaches, we report a highly accurate DNAmethylation-based classifier
(SCLC-DMC) that can distinguish SCLC subtypes. We further adjust the classifier for circulating-free DNA
(cfDNA) to subtype SCLC from plasma. Using the cfDNA classifier (cfDMC), we demonstrate that SCLC phe-
notypes can evolve during disease progression, highlighting the need for longitudinal tracking of SCLC dur-
ing clinical treatment. These data establish that tumor and cfDNA methylation can be used to identify SCLC
subtypes and might guide precision SCLC therapy.
INTRODUCTION

Small cell lung cancer (SCLC) is a highly aggressive form of lung

cancer with limited treatment options and generally poor prog-

nosis. SCLC patient outcomes are only modestly improved with
Cancer Cell 42, 1–13, F
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the addition of immunotherapy to frontline platinum-etoposide

chemotherapy in an unselected population.1,2 Currently, there

are no targeted therapies or predictive biomarkers in routine clin-

ical use for SCLC patients, although several are currently under

investigation including DLL3 protein expression for the use of
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DLL3-directed CAR-T cell3 or bispecific-antibody targeting4,5 as

well as SLFN11 expression to select patients for PARP-inhibitor

treatments.6 Despite these efforts, the 2-year survival rate has

not changed appreciably during the past decade.7

Although SCLC has historically been treated as a single dis-

ease entity, recent studies have revealed that there are biologi-

cally distinct subgroups of SCLC and that these subgroups

have different therapeutic vulnerabilities and hence could be

used for tailoring treatment regimens.8–11 We recently reported

on four distinct SCLC subgroups based on mRNA profiling.10

Three of the four subtypes are enriched in the predominant

expression of specific transcription factors, ASCL1 (SCLC-A),

NEUROD1 (SCLC-N), and POU2F3 (SCLC-P) while the fourth

is an inflamed subtype (SCLC-I) associated with higher levels

of PD-L1 and other checkpoint factors and higher levels of inter-

feron signaling and epithelial to mesenchymal transition (EMT)

based on their transcriptomic signature.10 Importantly, in two in-

dependent analyses, the SCLC-I subtype is associated with the

greatest benefit of the addition of immunotherapy to platinum-

etoposide chemotherapy demonstrating the potentially predic-

tive value of SCLC subtyping.10,12

Given the growing recognition that SCLC is comprised of sub-

types with distinct therapeutic vulnerabilities,10,13,14 the devel-

opment of practical biomarkers for identifying patients likely to

benefit from those therapies is urgently needed. Unfortunately,

the development of biomarkers in SCLC is hindered by the

lack of access to tissue as diagnostic specimens are often

limited to fine needle aspirations and surgery is rarely per-

formed.15 Consequently, common subtyping approaches stud-

ied for SCLC—such as the use of mRNA expression signatures

or multi-marker immunohistochemistry (IHC)—can typically be

performed on only a subset of patients. These approaches

also have shortcomings limiting their routine clinical adoption,

such as mRNA degradation commonly seen in preserved

SCLC specimens and the use of subjective and time-intensive

scoring methods used for multi-marker IHC assays.

In contrast to the tissue limitations, SCLC is often associated

with a high shedding of circulating tumor DNA (ctDNA) and circu-

lating tumor cells (CTCs) and consequently, liquid biopsy strate-

gies have been extensively researched in this setting.16–18 While

the development of circulating tumor cell-derived xenograft

models (CDX) allowed the mechanistic study of SCLC and has

become indispensable for the development of novel therapeutic

strategies,19,20 liquid biopsies are also used for the development

of biomarker approaches. Recently, it has been shown that DNA

methylation, as a surrogate to gene expression, can be used for

the development of prognostic signatures as well as to differen-

tiate ASCL1-dominant SCLC and NEUROD1-dominant SCLC

from a third group of SCLC which is highlighted by the absence

of ASCL1 or NEUROD1 dominance.21 These and other ap-

proaches, including profiling of plasma-derived nucleosomes22

and fragmentomics analyses,23 have opened avenues for using

liquid biopsies to guide precision medicine approaches in

SCLC. However, previous analyses were limited by the absence

of tumor specimens for direct comparison or profound subtyping

of patients based on clinically validated gene expression-based

subtyping which hampers the routine implementation of SCLC

subtyping. Here, we therefore investigate the potential use of

DNA methylation from both tumor and ctDNA in a cohort of
2 Cancer Cell 42, 1–13, February 12, 2024
179 SCLC patients whose subtypes are assigned based on our

recently established classification system.10 We develop ma-

chine learning approaches to allow the classification of SCLC

subtypes using DNA methylation from both tissue and liquid bi-

opsy samples in order to identify SCLC subgroups and enable

precision medicine in SCLC.

RESULTS

Detection of SCLC using DNA methylation in plasma
samples
We hypothesized that DNA methylation can be used to detect

SCLC in the circulation and to test this, we initially utilized a

methylation-sensitive digestion PCR assay designed previously

to detect lung cancer (EpiCheck assay). Evaluation was based

on a cohort of 52 SCLC cases of which 50 (17 limited stage

SCLC (LS-SCLC) and 33 extensive stage SCLC (ES-SCLC))

passed quality control and 398 control cases (395 passed quality

control) of which 137 cases have been used in an earlier valida-

tion study.24 The area under the curve for the detection was

0.988 (95% CI: 0.977–0.999; Figure 1A). Two different cut-offs

were used for the detection, yielding a sensitivity and specificity

of 100.0% (95% CI: 92.9%–100.0%) and 83.8% (95% CI:

79.8%–87.3%) with the low cut-off (EpiScore = 65) and 94.0%

(95% CI: 83.5%–98.7%) and 94.9% (95% CI: 92.3%–96.9%)

with the high cut-off (EpiScore = 74), respectively (Figure S1A),

with high sensitivity in both LS-SCLC (Figure S1B) and ES-

SCLC (Figure S1C). Four of the six markers used have also

been assessed in the subtyping cohort (Table 1) with high

methylation levels detected across all four subtypes (Table S1).

Cohort of clinical specimens for RNA-seq and DNA
methylation profiling
Given our finding that DNAmethylation was able to detect SCLC

from plasma, we next hypothesized that DNAmethylation can be

exploited as a biomarker to subtype SCLC. To this end, we

investigated two independent cohorts of 105 and 74 samples,

respectively (Table 1). Generation of RNA-seq and RRBS data

was feasible in both cohorts, though in C2, only RNA instead

of tissue sections was provided for a subset of samples, leading

to a lower number of samples with tissuemethylation data due to

the absence of DNA specimen in this subset. Reasons for unsuc-

cessful analysis were low RNA or DNA content, low DV200 for

RNA or unsuccessful library generation. Processed RNA-seq

data are shown in Data S1 (for cohort 1) and Data S2 (cohort 2).

Clinical SCLCcanbe classified using a reducedmachine
learning RNA-seq signature
We previously reported that SCLC can be classified into four

distinct subtypes using a gene expression classifier derived

from non-negative matrix factorization (NMF)10 and mRNA

expression data from25 both limited stage and1 extensive stage

SCLC specimens. However, our previously established NMF

method is limited to analyzing cohorts only, and thus, we aimed

to establish a predictive classifier to allow the subtyping of individ-

ual samples. Building on this analysis, we therefore developed a

gene ratio classifier (SCLC-GRC) in order to reduce the number

of genes required to subtype tumors and facilitate the subtype

classification using different mRNA profiling methods. Using a
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Figure 1. Detection and classification of SCLC

(A) Receiver operator characteristics (ROC) analysis of a DNA methylation-based test for the detection of SCLC from plasma.

(B) Predictive models were generated to classify SCLC based on RNA-seq (Gene Ratio Classifier; GRC) and consensus of several combined predictive models is

shown. A subtype was called when the consensusR50, else a sample was called equivocal. In addition, the expression of the three transcription factors ASCL1

(for SCLC-A), NEUROD1 (for SCLC-N), and POU2F3 (for SCLC-P) is shown normalized across the two cohorts. Furthermore, genes involved in neuroendocrine

and non-neuroendocrine (Non-NE) as well as in tumor inflammation (TIS) and expression of HLA is shown.

(C) Immune infiltration estimation using RNA-seq data (using the ESTIMATE algorithm). Boxplot shows the median as thick line, the box highlighting the first and

third quartile with the whiskers highlighting 1.53 the interquartile range.

(D) Characterization of SCLC consensus heterogeneity. The consensus agreement value for each subtype is plotted on the axis for each subtype by its consensus

fraction of the respective subtype, demonstrating overlaps between SCLC subtypes. The line plot at the axis characterizes the distribution of subtypes across the

axis. Wilcoxon test was used to compute p values between groups. See also Figure S1, Table S1, and Data S1.
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consensus classification (STAR methods) incorporating 181

genes, we were able to unambiguously classify the majority of

samples into a single subtype, notably independent of the cohort

and underlying RNA-seq method used (Table S1; Figure 1B).

Across both cohorts, unambiguous subtyping was achieved for

136/142 (96%) of samples with RNA-seq data (Table S1). Classi-

fication was balanced across the four subtypes with 75/142

(53%), 25/142 (18%), 21/142 (15%), and 15/142 (11%) represent-

ing the SCLC-A, SCLC-N, SCLC-P, and SCLC-I subtypes,

respectively. This distribution is comparable to the observed dis-

tribution in the IMpower133 study with SCLC-A—51%, SCLC-

N—23%, SCLC-I—18%, and SCLC-P—7%10 (chi-sq p =
0.4186). Consistent with the prior reports of the four subgroups,10

the SCLC-A and SCLC-N samples in our cohort demonstrated

a higher expression of neuroendocrine genes compared to

SCLC-P and SCLC-I, while the SCLC-P and SCLC-I subgroups

were characterized by a higher expression of HLA genes, tumor

inflammation genes (TIS) (Figure 1B) as well as a higher percent-

age of tumor stromaand, hence, a lower percentageof tumor cells

(Figure 1C) as calculated using RNA-seq deconvolution.26

Furthermore, using CIBERSORT deconvolution,27 we identified

increased immune cell infiltration in the SCLC-P and SCLC-I sub-

types, respectively (Figure S1D. Importantly, the consensus of

classification for each of the samples, retrieved from the overlap
Cancer Cell 42, 1–13, February 12, 2024 3



Table 1. Overview of included patients for the whole cohort, cohort 1 (C1) and cohort 2 (C2)

Group All C1 C2

N 179 105 74

Age (range) 66 (26–96) 66 (26–96) 68 (45–82)

Sex (%) F 72 (40%) 57 (54%) 15 (20%)

M 107 (60%) 48 (46%) 59 (80%)

RNA-seq [Yes/No] 142 (79%) 85 (81%) 57 (77%)

RNA classification (%) SCLC-GRC SCLC-A 75 (42%) 47 (45%) 28 (38%)

SCLC-N 25 (14%) 22 (21%) 3 (4%)

SCLC-P 15 (8%) 4 (4%) 11 (15%)

SCLC-I 21 (12%) 8 (8%) 13 (18%)

equivocal 6 (3%) 4 (4%) 2 (3%)

RRBS [Yes/No] 124 (69%) 83 (79%) 41 (55%)a

RRBS classification (%) SCLC-DMC SCLC-A 78 (44%) 55 (52%) 23 (31%)

SCLC-N 23 (13%) 20 (19%) 3 (4%)

SCLC-P 11 (6%) 3 (3%) 8 (11%)

SCLC-I 11 (6%) 5 (5%) 6 (8%)

equivocal 1 (1%) 0 (0%) 1 (1%)

Both [RNA-seq & RRBS] 100 (56%) 66 (63%) 34 (46%)
aFor 15/74 samples (21%) only previously extracted RNAwas available and thus no RRBS could be performed. Excluding those samples, success rate

for RRBS was 72% (41/57) for C2 and 76% (124/164) for the complete dataset.
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of 500 machine learning models highlighted certain distributions

across the four subtypes, with samples acquiring properties of

some of the other subtypes, suggesting that the SCLC-GRC

approach is preserving information on the intratumoral heteroge-

neity of SCLCsubtype properties (Figure 1D). Only few specimens

could not be classified (equivocal: 6/142; 4%) due to what ap-

pears to be technical limitations and RNA quality (Figure 1B).

Consequently, with a success rate of 96%, our classification

approach was highly accurate across different cohorts and

RNA-seq technologies while comprised of a limited number of

181 genes. Thus, this assessment is technically less challenging

than larger gene panels and enables robust SCLC subtype classi-

fication from different cohorts and individual samples.

Genome-wide hypomethylation is characteristic of
SCLC-P
We then analyzed the differences of genome-wide DNA methyl-

ation in our dataset. We averaged the methylation level across

bins of 100 kb width and calculated the mean for those bins per

subtype. To determine the genome-wide methylation level, we

calculated the rolling average over 500 bins (=50Mbp). The anal-

ysis highlighted profound differences in the global methylation

level per subtype, with the SCLC-P subtype presenting with a hy-

pomethylated phenotype and SCLC-N with a hypermethylated

phenotype, while SCLC-A and SCLC-I were comparable in cohort

1 (Figure 2A) as well as when filtering for tumor-intrinsic DNA

methylation signals using the CAMDAC algorithm28 in a subset

of samples in cohort 2 (Figure S2A; STAR methods). The

SCLC-P hypomethylation phenotype was also observed in cohort

2 while methylation patterns for the other subtypes appeared to

differ between the cohorts (Figure S2B). We further analyzed 59

SCLC-derivedcell lines acrossall four subtypesaswell as twopre-

viously published datasets on cell lines. Interestingly, in cell lines,

SCLC-P was hypermethylated (Figure S2C) contrary to tumor
4 Cancer Cell 42, 1–13, February 12, 2024
methylationanalysis,whichwasconfirmed in two independentda-

tasets of cell lines from the NCI SCLC cell miner project29 (Fig-

ure S2D) and the GDSC30 (Figure S2E), highlighting limitations

when working with cell line derived tumor methylation data.

To further explore these subtype-specific differences in global

methylation, we analyzed expression of 73 genes responsible for

reading, writing, or erasing DNA and histone methylation and

found 47 (64%) of them to be significantly differentially regulated

across subtypes (Table S2; Figure S3). In addition to the major

DNAmethyltransferases,DNMT1 (Figure2B),DNMT3A (Figure2C)

and DNMT3B (Figure 2D), and the S-Adenosylmethionine synthe-

tase (MAT2A; Figure 2E) which creates S-adenosylmethionine

(SAM) which is critical for methylation processes, we also found

SUV39H1 (Figure 2F) to be differentially expressed between the

four SCLC subtypes, especially between neuroendocrine and

non-neuroendocrine subtypes. SUV39H1 is a methyltransferase

that trimethylates histone H3 lysine 9 (H3K9) residues. Function-

ally, H3K9me3 recruitsHP1 andDNMT3A/B for stablemethylation

ofDNA (Figure2G),31,32 thereby linkinghistonemethylationwith in-

duction of DNA methylation (Figures 2C, 2D, 2F, and 2G). These

data suggest that SUV39H1-DNMT3A/B axis is a candidate

pathway contributing to differences in global methylation patterns

across SCLC subtypes and highlighting further differences in

epigenetic regulation of SCLC subtypes. Interestingly, the expres-

sion patterns of methylation effectors were distinct in SCLC cell

line models, which might contribute to the discordance of global

methylationpatterns incell lines compared to that inprimary tumor

samples (Figure S4; Table S2).

In order to further understand the genomic regions differing

between SCLC subtypes, we analyzed the average methylation

using bins of 100 bp across the genome (Figure 2H). We utilized

the training set of our combined RRBS data (Materials and

Methods) and used receiver-operator characteristics (ROC) to

analyze the association of each 100 bp bin with each of the
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Figure 2. Subtype-specific DNA methylation in SCLC

(A) DNAmethylation was assessed using reduced-representation bisulfite sequencing (RRBS) and DNAmethylation was averaged per sample and subtype over

100kbp bins and the rolling average over 500 bins (=50mbp) is highlighted in the c1 tumor samples.

(B‒G) Analysis of gene expression per SCLC subtype for DNA-methyltransferase 1 (DNMT1; B), DNA-methyltransferase 3A (DNMT3A; C) and 3B (DNMT3B; D),

methionine adenosyltransferase 2A (MAT2A; E) and histone lysine methyltransferase (SUV39H1; F). (G) Overview of mechanism that links SUV39H1 expression

with histone methylation.

(H) Scheme highlighting the analysis and selection of DNAmethylation sites associated with each of the SCLC subtypes using 100bp bins. By calculating the area

under the curve by receiver operator characteristics (AUROC) we defined genomic region with high (AUC >0.8) association with one the four respective subtypes.

(I–L) DNA methylation bins are shown related to their position within the genome for each chromosome for SCLC-A (I), SCLC-N (J), SCLC-P (K), and SCLC-I

(L) and number of regions is stated for each subtype. Boxplot shows the median as thick line, the box highlighting the first and third quartile with the whis-

kers highlighting 1.5x the interquartile range. Wilcoxon test was used to compute p values between groups. See also Figures S2–S5, Table S2, and Data S2.
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four respective subtypes by computing the area under the curve

(AUC) and filtered for highly associated sites with AUC >0.8. We

then highlight these highly associated sites according to their

genomic location, for SCLC-A (Figure 2I), SCLC-N (Figure 2J),

SCLC-P (Figure 2K), and SCLC-I (Figure 2L) as well as for each

sample individually (Figure S5). Importantly, bins were spread

across the different chromosomes confirming the genome-

wide methylation differences.

DNAmethylationallowsclassificationofSCLCspecimens
Our findings suggested that differences in DNAmethylation could

beexploited for thegenerationofbiomarkers thatare able todiffer-
entiate SCLC subtypes. Therefore, we combined the DNAmethyl-

ation data fromboth cohorts and randomly split the combined da-

taset in a training and an independent testing set (70%and 30%of

samples, respectively). The training set was used for both marker

selection andmodel training to ensure that the testing set could be

used for independent validation. DNAmethylation sites for training

havebeenassociatedwith eachof the four subtypes in the training

set usingROC (Figure 3A; TableS3).Despitemarketeddifferences

in DNAmethylation compared to cell lines, we furthermore filtered

for DNA regions that have also been associated with the four

subtypes in cell lines (AUC >0.7) to enable the model to train on

tumor-intrinsic signals and avoid overfitting the model based on
Cancer Cell 42, 1–13, February 12, 2024 5
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Figure 3. DNA methylation-based subtyping in SCLC

(A) Scheme describing the process to develop the SCLC DNA methylation classifier (SCLC-DMC). Both cohorts were combined and the dataset was split in a

training and a testing set and highly predictive DNA methylation sites were selected using area under the receiver operator characteristics curve (AUROC) to

create predictive models using extreme gradient boosting with dropouts multiple additive regression trees (xGB-DART) with leave one out cross-validation

(LOOCV). For each subtype, 500 models were individually trained. Performance was assessed on the testing set. A cfDNA adjusted consensus classification

approach (SCLC-cfDMC) was created using the same DNA methylation sites as used for the SCLC-DMC to predict subtypes in liquid biopsies.

(B) Classification of SCLC tissue specimen using the SCLC-DMC approach. Prediction of subtype is shown in the training set, the independent testing set as well

as in samples were classification by RNA (GRC) was not possible due to the absence of RNA-seq data (untested). The consensus in percentage of agreement

between the models is shown.

(C) Correlation of computed circulating tumor DNA (ctDNA) fraction by ultra-low pass whole genome sequencing (ULP-WGS) and a classifier based on seven

methylation sites (Calculated Fraction [%]).

(D) Differences in ctDNA fraction per DNA methylation were compared between samples analyzed at baseline prior to treatment and samples at tumor pro-

gression.

(E) Differences in genome-wide DNA methylation between tumor tissue samples and matched baseline plasma samples were compared. DNA methylation was

averaged per sample and subtype over 100kbp bins and changes between tumor DNA methylation and plasma DNA methylation were analyzed for each 100kb

bin for each patient represented by a row in the heatmap across each chromosome as highlighted above. Furthermore, mean methylation per bin across the

samples is highlighted in gray color above the heatmap together with the rolling average depicted by a black line. A histogram to the right highlights the dis-

tribution of differences for each bin across all samples.

(legend continued on next page)
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tumor-stroma derived methylation data, which we expect to be a

larger contribution in the SCLC-P and SCLC-I subtype. We then

selected the top DNA methylation sites for each of the four sub-

types by differences in DNA methylation level and AUC and

created models that were trained by randomly selecting 10, 50,

or 100 methylation sites per subtype, since this has been shown

to provide sufficient information (Figure S6A). Furthermore,

methylation sites selected are specific to SCLC compared to

data obtained from lung adenocarcinoma and pre-neoplasia as

well asnon-cancercontrols (FigureS6B).33Similar toourapproach

on RNA-seq data (Figure 1B), we used a threshold of R50%

consensus across the models to call a subtype. We ultimately

selected 50 methylation sites/subtype for our final predictive

model, as this provided classification with high accuracy (Fig-

ure S7A). Accuracy for our DNA methylation classifier (SCLC-

DMC) in the independent testing set was 95.8% (95% CI:

78.9%–99.9%; Kappa = 0.9286). Importantly, the SCLC-DMC

approachallowed thesubtypingof30additional samples forwhich

no RNA-seq data were available, and thus RNA-based classifica-

tion was impossible (Figure 3B; Table S3). Interestingly, heteroge-

neity from the consensus approach was reduced in the DMC

approach, compared to our GRC approach (Figures 1D and

S7B). In order to validate the performance of the assay and to

ensure that tumor-intrinsic features have been used for the

training, we used the DMC approach to also predict subtypes in

a set of cell lines that hadbeenclassifiedpreviously (FigureS7C).10

Our SCLC-DMC approach was also capable of classifying SCLC

cell lines across all four subtypes with an accuracy of 96.6%

(95% CI: 88.1–99.6).

DNAmethylation is preserved in ctDNA and can be used
for classification of SCLC subtypes
Since DNA methylation is highly conserved in plasma, we hy-

pothesized that DNA methylation can also serve as biomarker

in SCLC liquid biopsies. First, we established a DNA methyl-

ation-based assessment of ctDNA to calculate the ctDNA

burden. While the highly sensitive method for SCLC detection

(Figure 1A) only allows the assessment of SCLC presence/

absence, an additional method that allows the quantification of

ctDNA fraction could potentially enable more insights on data

derived from tumor and thus quality of classification. Indeed,

we found multiple DNA methylation sites that correlate with

ctDNA fraction based on ultra-low pass whole genome

sequencing (ULP-WGS) and we selected seven methylation

sites which are highly and linearly correlated to ctDNA fraction

(Figure S8A). By calculating the mean for the seven selected

sites, we established a convenient and easy method to assess

ctDNA in SCLC with high correlation to ULP-WGS (R = 0.89;

p < 0.0001; Figure 3C). We further analyzed how the ctDNA frac-

tion differed between samples at baseline and progression, and

observed no significant differences (Figure 3D). Consequently,

samples selected at tumor progression yielded results compara-
(F) The classification of SCLC subtypes using the SCLC-cfDMC approach is sh

classification based on the gene-ratio approach (GRC) as well as based on the tiss

the training cohort and inclusion for each sample is shown.

(G) Classification of SCLC-subtypes using the SCLC-cfDMC approach is shown f

shows themedian as thick line, the box highlighting the first and third quartile with

compute p values between groups. See also Figures S6–S9 and Table S3.
ble to samples at baseline, underscoring the applicability of our

SCLC subtyping approach.

Based on the robust results fromour tissue SCLC-DMC, we hy-

pothesized that our approach could also be applied to SCLC

plasma samples. We analyzed the differences between tumor

DNA methylation and plasma DNA methylation and observed

that SCLC DNA methylation patterns are indeed conserved in

plasma (Figure 3E), enabling a liquid biopsy approach. We there-

fore utilized the same DNA methylation sites as selected for our

SCLC-DMC for tissue samples, filtered for sites detected in

plasma and refitted a model using only samples with GRC classi-

fication (n = 43/54 80%; SCLC-cfDMC; Figure 3A). Indeed, this al-

lowed us to classify SCLC plasma samples with an accuracy of

100% (43/43) compared to the RNA-based SCLC-GRC and

93.3% (28/30) compared to the SCLC-DMC (Figure 3F;

Table S3). Moreover, we observed excellent concordance with

samples profiled only by our tissue-based SCLC-DMC to robustly

detect all four SCLC subtypes from clinical plasma samples. Of

note, all samples used for the classification were from untreated

patients to allow correlation of subtypeswith the associated tumor

tissue.We also compared the DNAmethylation levels selected for

the training with DNA methylation data obtained from healthy do-

nors34 and could demonstrate that baseline cfDNA samples from

SCLCpatients cluster generally distinctly to DNAmethylation pro-

files from the healthy comparison (Figure S8B). Correlating global

DNA methylation between healthy cfDNA and baseline samples,

we observed a statistically significant drop in correlation for sam-

pleswithhigherctDNAfraction (thirdand fourthquartile) compared

to samples with lower ctDNA fraction (first and second quartile;

Figure S8C).

Prior studiesusingsingle-cell profiling fromourgroupandothers

suggest that SCLC tumors can becomemore heterogeneous, and

shift their subtype, after progression on therapy.20,35,36 To assess

this, we analyzed a subset of patients, in which baseline samples

as well as plasma sample at clinical progression were available.

Our analysis of these samplesdemonstrateda strongheterogene-

ity in the sample subtype at progression as compared to their

baseline classification (Figure 3G; Figure S9A). For example, in a

large subset of patients, the SCLC subtype of their respective tu-

mor switched from SCLC-A to SCLC-I at progression. Therefore,

we further analyzed the promoter methylation levels in the cfDNA

of patients with a baseline SCLC-A subtype who did or did not

demonstrate a subtype switch to SCLC-I. Indeed, in samples

with subtype switching, we saw marked differences in the pro-

moter methylation of immune-related genes, such as CXCL12 (T

cell recruitment),CIITA (antigen presentationmachinery transcrip-

tion), STAT1 (inflammatory gene transcription) as well as the inter-

feron alpha and gamma receptors (IFNRA1, IFNRA2, and IFNGR1)

highlighting profound changes in the tumor:immune phenotypes

(Figure S9B). Even though all those changes were not limited to

the subtype switching samples, this further highlights that analysis

of promoter methylation from liquid biopsy samples can also
own in plasma sample taken at baseline prior to treatment. Additionally, the

ue DMC approach is shown. Samples with GRC classification were included in

or samples with matched baseline plasma and plasma at progression. Boxplot

the whiskers highlighting 1.5x the interquartile range.Wilcoxon test was used to
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Figure 4. Influence of SCLC subtyping

methods on in vitro drug screening and clin-

ical outcome

(A and B) Comparison of IC50 values for the (A)

CDKi R-547 and the (B) AURKi CYC-116 between

cell lines assigned to SCLC-A and SCLC-N using

SCLC-DMC.

(C and D) Clinical outcome depending on classi-

fication method used. Overall survival of SCLC

patients stratified by classification using the

SCLC-GRC (RNA-seq) and SCLC-DMC (DNA

Methylation) method for (C) SCLC-A and (D)

SCLC-N. Statistical significance is calculated us-

ing log rank test. Cox-proportional hazard ratio is

calculated and shown with 95% confidence in-

terval. Boxplot shows the median as thick line, the

box highlighting the first and third quartile with the

whiskers highlighting 1.5x the interquartile range.

Wilcoxon test was used to compute p values be-

tween groups.
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provide information on tumor evolution under therapeutic pres-

sure. Despite the switch to a more inflammatory phenotype, we

did not detect any differences in PFS (HR = 0.49; 95% CI: 0.11–

2.24) or OS (HR = 1.02; 95% CI: 0.27–3.9) for patients whose tu-

mors switched to SCLC-I versus those that maintained SCLC-A

subtype (Figure S9C). Treating SCLC cell lines with 2 mM cisplatin

for 9 days did not alter DNA methylation in the respective genes,

suggesting that the contribution of the tumor microenvironment

might be required for subtype plasticity (Figure S9D).

DNA methylation predicts drug response and clinical
outcome similar to gene expression
Previously, we demonstrated that, in vitro, cell lines assigned to

SCLC-AandSCLC-Nbygene expression possessed unique ther-

apeutic vulnerabilities.10 To validate that these same vulnerabil-
8 Cancer Cell 42, 1–13, February 12, 2024
ities are preserved using the methylation

classifier, we compared IC50 values for

over 400 drugs37 betweenmethylation-as-

signed SCLC-A and SCLC-N subtypes

and identified numerous distinct vulnera-

bilities between the groups. For example,

as demonstratedwith the geneexpression

classifier, SCLC-N cell lines were more

sensitive to the CDK inhibitor (BCL2i)

R-547 (Figure 4A), as well as to Aurora ki-

nase inhibitor (AURKi). CYC-116 (Fig-

ure 4B). Collectively, these data provide

evidence that DNA methylation is able to

predict drug response in vitro similar to

RNA-based classification.

Finally, to determine whether methyl-

ation- and RNA-based subtyping ap-

proaches yielded comparable clinical out-

comesamongSCLCpatients,weusedour

SCLC-GRCorour SCLC-DMC for patients

with known clinical outcomes.While many

samples had both RNA and methylation

data present, several of the patients were
onlysubtypedbyoneof the twomethods.Toensureadequatesta-

tistical power for the analysis, we focused on the two most preva-

lent subtypes, SCLC-A and SCLC-N, respectively. Importantly,

whencomparing the twoapproaches, overall survivalwas compa-

rable for patients identified as SCLC-A (HR (95%CI) = 1.01 (0.61–

1.66); Figure 4C) aswell as for patients identified asSCLC-N (HR=

1.02 (0.48–2.18); Figure 4D) when using SCLC-GRC (RNA-seq) or

SCLC-DMC (DNA methylation), demonstrating that DNA methyl-

ation and RNA-seq can be assessed and provide concordant re-

sults in the clinical setting.

DISCUSSION

Lung cancer histological subtypes are increasingly defined by

transcriptomic features rather than solely by mutational
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signatures.38 This is especially true in small cell lungcancerwith its

four distinct subtypes that are definedby specific geneexpression

rather than by targetable, or even distinct, genomic alterations.

Indeed, advancement of personalized therapies in such a setting

requires more complex clinical classification strategies. Conse-

quently, we developed robust classifiers using gene expression

data (SCLC-GRC) as well as DNA methylation (SCLC-DMC) to

accurately and reliably predict SCLC subtypes in clinical speci-

mens. Importantly, classification using SCLC-DMC was also es-

tablished in plasma specimen addressing a critical need in

SCLC, where tumor specimens are scarce and accurate liquid bi-

opsy-basedapproachesareurgentlyneeded.Bothmethodsallow

the precise classification of a transcriptionally defined tumor

phenotype while the DNA methylation-based method allowed to

further subtyping using liquid biopsy specimen. Consequently,

DNA methylation-only strategies can be employed in settings

where molecular analysis is performed primarily with DNA spec-

imen, while the use of transcriptional methods might enable the

integration with additional signatures, for example for better

description of the tumor microenvironment or assessment of

marker genes.39

To date, SCLC subtypes have been associated with the

predominant expression of a transcription factor (ASCL-1,

NEUROD1, or POU2F3) although it is worth noting that the

SCLC-A, -N, -P, and -I subtypes were defined by clusters that

arose from NMF clustering and not by the individual factors

themselves. Initial subtyping approaches have explored the

use of immunohistochemistry (IHC) for these factors,9,10,40

although this approach is limited by the tissue requirements,

challenges in quantitation, heterogeneity in staining, and the

observation that no single marker specifically can unequivocally

define each subgroup.9,40 Additionally, YAP1 was initially pro-

posed to define a distinct subtype itself,8 but on further analysis

was found to be absent or expressed only at low levels in tumors

(typically in the stroma or in the NSCLC component of mixed tu-

mors), although a subpopulation of YAP1 positive cells may

emerge in the setting of resistance.9,10,20,41 Intriguing results

from the SWOG1929 trial, a phase II trial assessing the addition

of the PARP inhibitor talazoparib to atezolizumabmaintenance in

ES-SCLC highlighted that biomarker-driven trials in SCLC are

possible, even with stratification based on limited tissue, as

this trial required SLFN11 positive IHC for enrollment.42 There-

fore, IHC remains to be an important method for biomarker

assessment in SCLC but also for understanding of heterogene-

ity. Consequently, tissue-based biomarker assessment can

guide clinical treatment decisions and the use of an mRNA-

based approach can be implemented for SCLC subtyping. How-

ever, technical challenges and tissue limitations persist, and thus

classification is not possible for all samples as is the analysis of

longitudinal samples.

Consequently, we and others hypothesized that DNA methyl-

ation might overcome these limitations by providing a more

robust classification method as well as enabling a liquid biopsy

option. Indeed, DNA methylation has been reported to distin-

guish ASCL1 and NEUROD1 driven tumors as well as subtypes

independent of those transcription factors21,43 and to be associ-

ated with drug response.44 In addition, DNAmethylation has also

been implicated in phenotypic regulations like EMT.45,46 DNA

methylation is highly dysregulated in cancer with transcription
factors being particularly regulated by DNA methylation,47 mak-

ing it highly relevant in transcriptionally defined cancer subtypes

like in SCLC.

Hence, using a large cohort of clinical SCLC specimens with

genome-wide DNA methylation data, we were able to establish

a robust classifier to define SCLC subtypes with comparable

clinical outcomes to our RNA-based classification. Importantly,

the SCLC-DMC was able to classify tumor samples that failed

classification using RNA suggesting potential advantages of

DNA methylation over gene expression signatures. Even more,

the preservation of DNA methylation patterns in cfDNA is of

particular interest as it allows the classification from liquid bi-

opsies. Indeed, our data show limited differences between

cfDNA methylation and DNA methylation in the primary tumor.

This is critical in SCLC where tumor tissue is limited but high

amounts of cfDNA can be isolated.48 Thus, the use of cfDNA to

identify disease subtypes could rapidly facilitate clinical imple-

mentation. DNAmethylation has previously been used for detec-

tion of SCLC, as well as for its differentiation to other cancers

from liquid biopsies,49 findings we replicated here by utilizing a

commercial DNA methylation assay that incorporates limited

DNA methylation sites.24 Future assays might be able to

combine both, the detection of SCLC for initial diagnosis with

the subtyping, to enable a liquid-first rapid therapy initiation,

which is especially important in rapidly progressing SCLC.50

Additionally, DNA methylation is increasingly used to detect tu-

mor DNA in plasma which could serve as predictor of response

to therapy. Consequently, longitudinal plasma samples are crit-

ical to track tumor evolution during treatment and serve as early

markers of treatment response and relapse.18,51

Furthermore, our study provides new insights into the epige-

netic regulation of SCLC subtypes. Interestingly, SCLC-P was

consistently hypomethylated in both primary tissue cohorts,

while the other subtypes demonstrated more variability between

the two clinical cohorts that will require further investigation.

However, our analysis only allowed to investigate DNA methyl-

ation and gene expression differences while many epigenetic

processes contribute to different SCLC phenotypes.52 Impor-

tantly, we highlighted strong differences between primary tumor

samples and cell lines as well as differences in expression of

epigenetic enzymes that might contribute to those differences.

Strikingly, SCLC-P cell line models exhibited hypermethylated

phenotypes compared to primary tumors. Intriguingly, in this

shift in global methylation was coincident with significantly

increased expression of the SUV39H1-HP1-DNMT3A/B axis,

along with several other methyltransferases, not seen in

SCLC-P tissue samples. It is possible that tumor extrinsic fac-

tors, such as the tumor microenvironment, play key roles in

shaping global methylation patterns in SCLC as has been re-

ported in other cancers.53 Thus, in cell only systems, such as

in vitro cell culture, absence of these factors produces global

shifts in tumormethylation patterns. Changes in gene expression

and global DNA methylation have also been reported during tu-

mor sphere formation in vitro as well as compared to primary tu-

mor, suggesting that cell line cultivation in SCLC might impact

gene expression and epigenetic regulation.54–56 Considering

that cell lines are often used as model for further investigation,

it will be important to clarify how representative cell lines are in

SCLC to allow robust in vitro studies.
Cancer Cell 42, 1–13, February 12, 2024 9
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Previous work based on mouse models already demonstrated

that SCLC subtypesmay shift and that tumorsmay evolve toward

greater heterogeneity, under the selection pressure of different

treatments.20 In this study, we confirm the heterogeneity of

SCLC subtypes during treatment, as we observed a switch to

an inflamed subtype in a large proportion of ASCL1+ samples at

progression. This finding was supported by the notion that the

switch to a more inflammatory phenotype was accompanied by

profound changes in the promoter methylation of genes control-

ling immune cell recruitment, interferon responsiveness and pro-

duction, as well as inflammatory gene transcription. These find-

ings support the ability of frontline etoposide, platinum, and

immunotherapy (EP + IO) therapies to ‘‘reawaken’’ tumor-immune

crosstalk in a subset of tumors, including those not initially ‘‘in-

flamed’’ or SCLC-I. In line with this, we also observed that some

samples with SCLC-A or SCLC-N have inflammatory features

suggesting that inflammatory states also exist in those samples,

in line with recently presented data.57 Understanding how some

tumors evolve to a more ‘‘inflamed’’ state but still progress clini-

cally will be essential for identifying treatment regimens that can

successfully harness the immune system for increased tumor

control. Additionally, it is critical to further establish longitudinal

collection of SCLC specimens to enable better understanding of

evolution and gain deeper insights into SCLC subtype plasticity.

The capability of our system to identify those changes further

highlights the power of liquid-biopsy-guided surveillance during

cancer treatment in SCLC. Furthermore, it is likely that a cfDNA-

specific classifier could be further refined to take into account

cfDNA-specific attributes (e.g., background cfDNA methylation)

whichcould furtherenhance itsaccuracy.58Likewise, confirmation

of our findings in additional independent clinical cohorts is critical

for clinical implementation, and will also further clarify reliability in

the rare SCLC-P and SCLC-I subtypes. Additional analysis will

also need to take into account limitations in ctDNA fraction and

will need to establish clear analytical parameters to allow a precise

classification of SCLC subtypes in a clinical setting. Likewise, the

analysis of gene expression changes from liquid biopsy specimen

hasnotbeen limited toDNAmethylationanalysisbut alsootherap-

proaches, assessing the distribution of cfDNA fragments across

the genome, like the DELFI59 or the EPIC-seq method23 to enable

fragmentomics-based analysis of SCLC. In addition, the develop-

ment of highly sensitive nucleosome-capture methods22 has also

demonstrated high performance for SCLC subtyping and detec-

tion. Future assaysmight consequently deviate fromDNAmethyl-

ation approaches or might incorporate a combination of different

approaches for improved performance.60

Taken together, our approaches using gene expression data

as well as DNA methylation in SCLC highlight that reliable sub-

typing in transcriptionally defined cancer is feasible from tumor

specimen as well as by using a methylation-based liquid biopsy

assay. Our findings indicate that DNA methylation-based bio-

markers using tumor or blood samples can be implemented for

the identification of clinically relevant SCLC subtypes, a critical

step toward bringing precision, biomarker-directed therapy

into the clinic for SCLC and potentially other tumor types.

Limitations of the study
In this study, we do not assess parameters critical for routine im-

plementation of the developedmethods such as RNA/DNA qual-
10 Cancer Cell 42, 1–13, February 12, 2024
ity, minimal tumor content for tissue-based assays as well as the

influence of ctDNA content on subtyping performance and min-

imal ctDNA content for subtyping. Additionally, while we report

on LOD and LOB for the epicheck assay designed to detect

SCLC from previously undiagnosed individuals, we do not

assess LOD and LOB for our 7-methylation site assay designed

to assess ctDNA fraction. Consequently, additional studies are

required to translate this method into a validated assaywith strict

analysis criteria. Furthermore, the limited amount of SCLC

plasma samples with matched tissue required to assess perfor-

mance required us to rely on cross-validation instead of vali-

dating the results in independent cohorts. Gathering additional

cohorts from various resources and regions is critical to assess

the robustness of the methods (for both tissue and plasma)

and will be the subject of future studies. Lastly, while we

observed differences in drug response in cell line models ac-

cording to SCLC subtypes, final validation of clinical validity of

SCLC subtyping is pending prospective clinical trials.
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Human cell line: SHP-77 ATCC Cat # CRL-2195

Human cell line: H865 ATCC Cat # CRL-5849

Human cell line: H2330 ATCC Cat # CRL-5940

Human cell line: H1522 ATCC Cat # CRL-5874_FL

Human cell line: H2196 ATCC Cat # CRL-5932

Human cell line: DMS53 ATCC Cat # CRL-2062

Human cell line: H146 ATCC Cat # HTB-173

Human cell line: DMS79 ATCC Cat # CRL-2049

Human cell line: H1876 ATCC Cat # CRL-5902

Human cell line: H209 ATCC Cat # HTB-172

Human cell line: H2108 ATCC Cat # CRL-5984_FL

Human cell line: H378 ATCC Cat # CRL-5808

Human cell line: H1688 ATCC Cat # CCL-257

Human cell line: H2195 ATCC Cat # CRL-5931

Human cell line: H1436 ATCC Cat # CRL-5871

Human cell line: H345 ATCC Cat # CRL-5846

Human cell line: H2198 ATCC Cat # HTB-180

Human cell line: H735 ATCC Cat # CRL-5978

Human cell line: H69 ATCC Cat # HTB-119

Human cell line: H250 ATCC Cat # CRL-5828

Human cell line: H1963 ATCC Cat # CRL-5982

Human cell line: H187 ATCC Cat # CRL-5804

Human cell line: H1105 ATCC Cat # CRL-5856

Human cell line: H128 ATCC Cat # HTB-120

Human cell line: H510A ATCC Cat # HTB-184

Human cell line: H1672 ATCC Cat # CRL-5886

Human cell line: DMS153 ATCC Cat # CRL-2064

Human cell line: H1417 ATCC Cat # CRL-5869

Human cell line: H748 ATCC Cat # CRL-5841

Human cell line: H2029 ATCC Cat # CRL-5913

Human cell line: H1238 ATCC Cat # CRL-5859

Human cell line: H740 ATCC Cat # CRL-5840

Human cell line: H774 ATCC Cat # CRL-5842

Human cell line: H2081 ATCC Cat # CRL-5920

Human cell line: H2141 ATCC Cat # CRL-5927

Human cell line: H2107 ATCC Cat # CRL-5983_FL

Human cell line: CORL88 Sigma Aldrich Cat # 92031917-1VL

Human cell line: H889 ATCC Cat # CRL-5817

Human cell line: H1092 ATCC Cat # CRL-5855

Human cell line: H719 ATCC Cat # CRL-5837

Human cell line: H1836 ATCC Cat # CRL-5898

Human cell line: H1618 ATCC Cat # CRL-5879

Human cell line: H526 ATCC Cat # CRL-5811

Human cell line: H211 ATCC Cat # CRL-5824

Human cell line: H196 ATCC Cat # CRL-5823

Human cell line: H841 ATCC Cat # CRL-5845

Human cell line: DMS114 ATCC Cat # CRL-2066

Human cell line: H1930 ATCC Cat # CRL-5906

Human cell line: H1048 ATCC Cat # CRL-5853

Human cell line: H1341 ATCC Cat # CRL-5864

Human cell line: H2227 ATCC Cat # CRL-5934

ll
OPEN ACCESSArticle

Cancer Cell 42, 1–13.e1–e5, February 12, 2024 e2

Please cite this article in press as: Heeke et al., Tumor- and circulating-free DNA methylation identifies clinically relevant small cell lung cancer sub-
types, Cancer Cell (2024), https://doi.org/10.1016/j.ccell.2024.01.001



ll
OPEN ACCESS Article

Please cite this article in press as: Heeke et al., Tumor- and circulating-free DNA methylation identifies clinically relevant small cell lung cancer sub-
types, Cancer Cell (2024), https://doi.org/10.1016/j.ccell.2024.01.001
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, John V.

Heymach (jheymach@mdanderson.org).

Materials availability
This study did not generate new unique reagents. Cell lines used in this manuscript have been retrieved and are available from ATCC.

Data and code availability
Code generated in this manuscript can be found at: https://github.com/MD-Anderson-Bioinformatics/SCLC_Subtyping.

Raw sequencing data generated as part of this manuscript are deposited in dbGap (https://www.ncbi.nlm.nih.gov/gap/) under

accession number phs003416.v1.p1. Sequencing data from cell lines are deposited in GEO (https://www.ncbi.nlm.nih.gov/geo/)

with accession number GSE241673. Processed RNA-seq data for cohort 1 and cohort are additionally directly provided in this manu-

script as Data S1 and Data S2, respectively.

Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Patient selection
Patients in this study were included in two cohorts. In cohort 1, 105 patients have been selected after pathological examination of the

tissue quality. All patients in this cohort were consented to the GEMINI protocol at the University of Texas (UT) MD Anderson Cancer

Center (UT MDACC). In cohort 2, 74 patients were included from the UT MD Anderson Cancer Center, the Hospital del Mar, Barce-

lona, Spain, Vanderbilt Medical Center, Nashville, TNUSA, and LPCEBiobankCote d’Azur (BB-0033-00025), Nice, France. For 15/74

patients in cohort 2, plasma and previously extracted RNA was included. For those patients, only RNA-seq and plasma DNAmethyl-

ation was performed but no tissue DNA methylation due to the absence of tissue for DNA extraction. All patients provided written

informed consent. Each sample was required to have >100 tumor cell in each specimen, and at least 2 slides of tissue sections

was required for inclusion in the study. All patients provided written informed consent prior to study enrollment and the study com-

plied with the declaration of Helsinki.

Patient samples

Formalin-fixed and paraffin embedded (FFPE) specimen were used from all patients. At least two sections of 5-8mmwere used. Each

slide were analyzed by a board certified pathologist to contain at least 100 tumor cells. Blood was obtained by phlebotomy and

plasma was processed within 6h of blood draw. 1-2mL of plasma were used for each patient.

Clinical data
Clinical data was retrieved from the GEMINI database which includes clinical data obtained during treatment at the UT MDACC and

consent was provided for accessing the clinical data. Additional data were retrieved manually and reviewed by three board-certified

oncologists. For the analysis of survival, overall survival was calculated by time from date of diagnosis to death and patients with lost

follow-up were censored at the date where the last information was obtained. Survival analysis was performed using Kaplan-Meier

analysis and cox-proportional hazard ratio estimation using the survminer package64 in R.65

Cell line samples
The humanSCLC cell lines H1694, H446, H2171, H847, H82, NJH29, H524, DMS273, SHP-77, H865, H2330, H1522, H2196, DMS53,

H146, DMS79, H1876, H209, H2108, H378, H1688, H2195, H1436, H345, H2198, H735, H69, H250, H1963, H187, H1105, H128,

H510A, H1672, DMS153, H1417, H748, H2029, H1238, H740, H774, H2081, H2141, H2107, CORL88, H889, H1092, H719,

H1836, H1618, H526, H211, H196, H841, DMS114, H1930, H1048, H1341, H2227 were obtained from ATCC (Manassas, VA) or

Sigma Aldrich (St. Louis, MO). The patient-derived xenograft cell line NJH29 was kindly provided by Dr. Julien Sage (Stanford Uni-

versity, Stanford, CA). Cells were grown in suggested media supplemented with 5% fetal bovine serum and 1% penicillin/strepto-

mycin and maintained in a 37�C humidified chamber with 5% CO2. Cells were passaged less than six months from the time they

were received, regularly tested for Mycoplasma contamination and routinely subjected to DNA fingerprinting.

For the treatment with chemotherapy, H1876 and H2195 cells were cultivated in HITES with 5% fetal bovine serum and 1% peni-

cillin/streptomycin. They were treated with 2 mM cisplatin for 0, 2, 5, 9 days, respectively.

METHOD DETAILS

SCLC detection using cfDNA
Detection of SCLC has been performed using a commercial PCR based assay. Initial validation has been performed previously.24

Sample inclusion, assay execution and data analysis has been performed as highlighted previously. However, 288 additional spec-

imens have been included in this analysis. Furthermore, new cut-offs specifically for the detection of SCLC have been selected in this
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study. Level of detection (LOD) and level of blank (LOB) was determined by 22 replicates of an unmethylated plasmid DNA that

contain the cloned markers spiked into healthy human cfDNA in order to establish the limit of blank (LOB) for each marker separately

(the average LOB across the markers was 1:249,281). Totally 35 ng of DNA was used for the spike-in experiment of which 3.5 ng of

DNAwas used per qPCR reaction for each of the six markers. For the assessment of LOD, we spiked the unmethylated DNA together

with DNA that is methylated in these 6 markers from a human lung cancer cell line into 35 ng of the healthy human plasma cfDNA at a

dilution of 1:10,000 (methylated:unmethylated). All 22 replicates detected DNAmethylation in the sixmarkers demonstrating a LODof

at least 1:10,000.

Nucleic acid extraction
For the nucleic acid extraction, at least two slides of FFPE tissue samples were cut at 5-8mm each. For each sample, tumor area was

highlighted by a board-certified Pathologist and macrodissection was used prior to extraction in cohort 1 but not cohort 2, if neces-

sary. For combined RNA and DNA extraction, the MagMAX FFPE DNA/RNA Ultra Kit (Thermo Fisher Scientific, A31881) was used

following the manufacturer’s protocol. DNA concentration was assessed using the Qubit 1X dsDNA HS Assay Kit and a Qubit 2.0

fluorimeter. For RNA, concentration was measured using the Qubit RNA high sensitivity (HS) assay kit. RNA quality was analyzed

using the Agilent RNA 6000 Pico kit on a 2100 Bioanalyzer.

For cfDNA extraction, 1–3 mL Plasma obtained in Streck Cell-Free DNA BCT tubes was used for each sample. Plasma was ob-

tained within 6h of phlebotomy by spinning the blood for 10 min at 18003 g followed by a second centrifugation step of the isolated

plasma for 10 min at 2000 3 g. Both centrifugation steps were performed in swing-bucket rotors. cfDNA was extracted using the

Apostle MiniMax High Efficiency Cell-Free DNA Isolation Kit (Apostle Inc). cfDNA concentration was assessed using the Qubit 1X

dsDNA HS Assay Kit and a Qubit 2.0 fluorimeter.

RNA-seq
For cohort 1, 85 samples have been selected for RNA sequencing. All samples were treated with DNase treatment using DNase I

(ThermoFisher, Massachusetts, USA) prior to RNA-seq to reduce DNA contamination that might interfere with downstream results.

Library generation using the SMARTer Stranded Total RNA-seqKit V3 (Takara Bio USA Inc., California, USA) was performed following

the manufacturer’s instructions. Final library quantity was measured by KAPA SYBR FAST qPCR and library quality was evaluated

using a TapeStation D1000 ScreenTape (Agilent Technologies, CA, USA). Libraries were sequenced on an Illumina NovaSeq instru-

ment (Illumina, California, USA) with a read length configuration of 150 PE for 80M PE reads per sample (40M clusters). Fastq files

were quality trimmed using trimmomatic and aligned to the GRCh38 transcriptome using salmon v1.6.0.

For cohort 2, 57 samples have been submitted for RNA-seq using the Illumina RNAAccess hybrid capture-based protocol. All sam-

ples were treated with DNAse I prior to library generation according to manufacturer’s protocol. Sequencing was performed on an

Illumina NovaSeq instrument with 100M PE configuration. 40M reads were used for each sample. Fastq files were quality trimmed

using trimmomatic and aligned to the GRCh38 transcriptome using salmon v1.6.0.

RRBS
To analyze DNA Methylation across the genome, RRBS (Reduced Representation Bisulfite Sequencing)66,67 was utilized using the

Ovation RRBS Methyl-Seq kit (Tecan Group Ltd., Zurich, Switzerland). To account for the highly degraded DNA from FFPE and

plasma samples, the material was first treated with one unit of Shrimp Alkaline Phosphatase (New England Biolabs, Ipswich, MA)

to remove phosphorylated DNA which might interfere with downstream analysis.34 Briefly, 0.1–100ng of genomic DNA was digested

using MspI, and Illumina-compatible cytosine-methylated adapter were ligated to the enzyme-digested DNA. For lower concentra-

tions of DNA, adapters were diluted 1:40 to 1:120, in order to decrease the representation of randomly fragmented DNA and adapter-

dimers in the final library. RRBS libraries were then visualized using Bioanalyzer High Sensitivity DNA chips (Agilent, Santa Clara, CA),

and those passing QC were subsequently sequenced as 100bp paired-end reads on an Illumina NovaSeq instrument with a target

sequencing depth of 300M PE reads (150M clusters). After sequencing, Fastq files were obtained and adapters were trimmed using

trimmomatic. Alignment and retrieval of DNA Methylation (in percent of total methylated Cytosines) was performed using Bismark v

0.2268 against the GRCh38 human genome. Samples with <50%mapping rate and, <60M aligned reads were excluded from further

analysis. Finally, cytosines with coverage <10 were filtered out to assure high confidence DNA Methylation analysis.

For cell lines, 100ng of RNA was used using the Ovation RRBS Methyl-Seq kit (Tecan Group Ltd., Zurich, Switzerland) as for the

clinical samples but without the initial phosphatase step. Sequencing was performed in a single Read 57 bp configuration on a Illu-

mina HiSeq 3000 sequencer. Data processing was performed likewise using Bismark v 0.22. Annotations of methylated regions was

performed using the annotatr 69 package and the Hg38 database.

Deconvolution of tumor intrinsic signals in cohort 2 was performed using the Copy number-aware deconvolution of tumor-normal

DNA methylation (CAMDAC) algorithm as published previously.28

ULP-WGS
Library preparation was performed using the KAPA HyperPrep Kit with Library Amplification product KK8504) and IDT’s duplex UMI

adapters (KAPA Biosciences). Sequencing is performed on a NovaSeq 6000 with 23 150 bp configuration and a target sequencing

depth of �0.33.
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In order to define DNA methylation sites that are associated with general ctDNA content, we correlated DNA methylation sites

against their reported cDNA content using ULP-WGS. Only sites with R2 > 0.65, slope between 0.9 and 1.1 and intercept between

�10 and 10 were selected. After manual analysis, seven sites have been selected: "chr12:2797449000, "chr1:723656300,
"chr17:2913938700, "chr19:12873720900, "chr2:1040155700, "chr21:3466907800, "chr21:45590104". ctDNA content was calculated

by averaging the methylation level across all seven sites for each sample.

Generation of predictive models for classification using RNA-seq
We hypothesized that using gene ratios of one gene over another gene might be more robust to classify SCLC across different data-

sets than using the single expression value. For this purpose, we combined the data retrieved from George et al. comprising of sur-

gical SCLC specimen and the data from the IMPower133 clinical trial as published in Gay CM et al.10 While for the latter only limited

genes were published, we filtered for genes that were present in both datasets that served as training set. We used ROC analysis to

define the genes which were mostly associated with one of the four subtypes by analyzing the association of each respective gene

with each of the four subtypes. For each of the four subtypes, the Top 50 genes with the highest area under the curve in ROC analysis

have been selected for model generation. Due to some overlaps across the genes selected, finally 181 genes were used (Table S1).

We then created all different gene ratios of those genes. To select highly relevant gene ratios, we created predictive models, incor-

porating randomly selected 20 gene ratios per model with 500 distinct models for each of the four subtypes (totally 2000 models

created). For the training, the caret package70 in Rwas used, and extreme gradient boostingwith DART (Dropout Additive Regression

Trees)71 was utilized with repeated cross validation with a 5-fold split and 20 repeats during training. Thosemodels were then used to

define the subtypes in our clinical dataset. In order to obtain the most generalized subtype classification, we used all models for the

prediction and ifR 50% of the models agreed on the subtype, the subtype was called based on this consensus classification. Sam-

ples with less than 50% agreement are called ‘‘equivocal’’ as a clear classification could not be obtained with our current method-

ology. Consensus as well as subtyping for each sample is provided in Table S1.

Generation of predictive models for classification using DNA methylation data
To generate models with broader applicability, we combined data from the cell lines and our clinical GEMINI cohort in order to tune

models to work across different sample types. The selected DNA Methylation sites were filtered to be present in both datasets.

Furthermore, only methylation sites with % 10% missing data were used. Following, we performed ROC analysis on the combined

set to select the methylation sites that had the highest association with one of the four subtypes by analyzing the association of each

DNA methylation site with each of the four subtypes. We selected based on the following criteria; For SCLC-A: AUC R 0.7 & differ-

ence to other subtypes R abs(25%) (N = 199), for SCLC-N: AUCR 0.7 & diff R abs(30) (N = 127), for SCLC-P: AUC R 0.8 & diff R

abs(35) (N = 194), for SCLC-I: AUCR 0.7 & diffR abs(30) (N = 293; Table S3). Initially, we analyzed the influence of number of methyl-

ation sites and performance by selecting, 1, 2, 3, 4, 5, 10, 20, 30, 40, 50, 100 methylation sites randomly training 100 models for each

of the combinations. We analyzed the accuracy for each of those models on the training and the testing set (Figure S6A). Based on

this analysis, for each of the four subtypes we created models by randomly selecting 10, 50, or 100 methylation sites per subtype per

model for our final classifier. For each number of methylation sites, 500models were created using xgboost with DART leave-one-out

cross validation (LOOCV) using the training set. Similar to the RNA-seq approach, a subtype was called whenR50% agreed on the

subtype. If < 50% agreement was achieved, the subtype was classified as ‘‘equivocal’’ due to the lack of consensus. The classifi-

cation for each sample is provided in Table S3.

For models predicting subtypes using cfDNA, the samemethylation sites were used but filtered for presence in the cfDNA dataset.

Similarily to tissuemodels, we used xgBOOSTwith DART and LOOCV and trained 500models per subtype. The consensus approach

was applied. The classification for each sample is provided in Table S3.

QUANTIFICATION AND STATISTICAL ANALYSES

All analysis have been performed in R v4.1.1.65 Binning of the genome was performed based on the

BSgenome.Hsapiens.NCBI.GRCh38 database72 using a tile width of 100bp or 100,000 bp cutting the last tile of each chromosome.

DNA methylation across each tile was averaged excluding missing data. To analyze the genome-wide methylation per subtype, the

mean methylation per tile per sample was further averaged per subtype. The rolling average of 500 bins (=50Mbp) was calculated

using the ‘rollmean’ function in the R zoo package.73

In order to annotate the methylation sites to regions in the genome associated with genes, the annotatr package has been used.69

The following regions have been annotated based on the GRCh38 genome: "hg38_genes_promoters", "hg38_genes_exons",

"hg38_genes_introns", "hg38_genes_1to5kb", "hg38_genes_5UTRs", "hg38_genes_intergenic", "hg38_genes_3UTRs", "hg38_ge-

nes_firstexons", "hg38_genes_intronexonboundaries", "hg38_genes_exonintronboundaries".

Association of DNAmethylation sites or regions has been performed using pROC.74 Cut-offs were calculated using Youden’s J and

sensitivity and specificity has been calculated based on the pre-calculated cut-off. For the calculations of differences, unless other-

wise highlighted, Wilcoxon test has been used with FDR correction for multiple testing using rstatix.75

Figures were created using ggplot276 or ComplexHeatmap.77 The graphical abstract was created using Biorender.com.
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