

Apostle MiniMax Methyl Library Preparation Kit (for Illumina®) User Manual

MiniMax Methyl Library Preparation Module MiniMax Methyl Stubby Adapter (UDI) Module (for Illumina®)

Statement

For research use only. Not for use in diagnostic procedures.

This instruction is intended for use with the MiniMax Methyl Library Preparation Kit (for Illumina®). Apostle, Inc. reserves all rights.

Content

Statement	2
Revision History	4
Announcement	4
Introduction	5
Kit Content	5
MiniMax Methy Library Preparation Module	
Equipment and Consumable	7
Workflow	8
Protocol	9
Step 1: Fragmentation	9
Step 2: MiniMax End Prep	9
Step 3: Adapter Ligation	10
Step 4: Post-ligation Cleanup	11
Step 5: Library Conversion	11
Step 6: Library Amplification	12
Step 7: Post-amplification Cleanup	13
Step 8: Library Evaluation	13
Step 9: Sequencing	13
Appendix 1: MiniMax Methyl Stubby Adapter (UDI) (for Illumina®) Index Information	14
Appendix 2: Frequently Asked Question	17

Announcement

Environment

- Temperature: 20-25°C; Humidity: 40-60%.
- The personal protective equipment should be equipped during the experiment period.

Temperature Control

- Avoid repeated freezing and thawing.
- Unless otherwise specified, the preparation of enzymatic reaction should be carried out on ice/cold metal bath.
- Make sure the thermal cycler reaches the designated temperature before loading any reaction tube in.

Avoid Cross-contamination

- Briefly centrifuge all the tubes to collect the contents to the bottom before opening the lids.
- Physically separate the laboratory space, equipment and consumables among different steps.
- Clean the lab area using 0.5% sodium hypochlorite once finishing the experiment.

Others

- Make sure the regents are fully thawed and thoroughly mixed prior to use.
- Unless otherwise specified, all the centrifuge steps are conducted at room temperature (20-25°C).
- Unless otherwise specified, all mixing steps listed as "mix thoroughly" should be performed by either vortexing for 10 sec or pipetting up and down for 10 times, and then briefly centrifuge to collect the contents.

Introduction

MiniMax Methyl Library Preparation Kit (for Illumina®) is designed for preparation of high-quality methylation sequencing (Methyl-Seq) libraries from double-stranded DNA (dsDNA) on Illumina platforms. This A-T ligation-based kit offers a stable and efficient Methyl-Seq library preparation solution for whole genome sequencing, as well as hybridization capture based targeted sequencing powered by Apostle.

This kit is suitable for multiple DNA samples, including gDNA, cfDNA and FFPE DNA. Besides, it is compatible with series of commercial conversion solution, with DNA input ranging from 10-1,000 ng. All the components have been verified by quality control with a stable and remarkable performance.

Kit Content

The MiniMax Methyl Library Preparation Kit (for Illumina®) consists of Library Preparation Module and Adapter Module. Both modules are required for library construction.

Apostle MiniMax Methyl Library Preparation Module

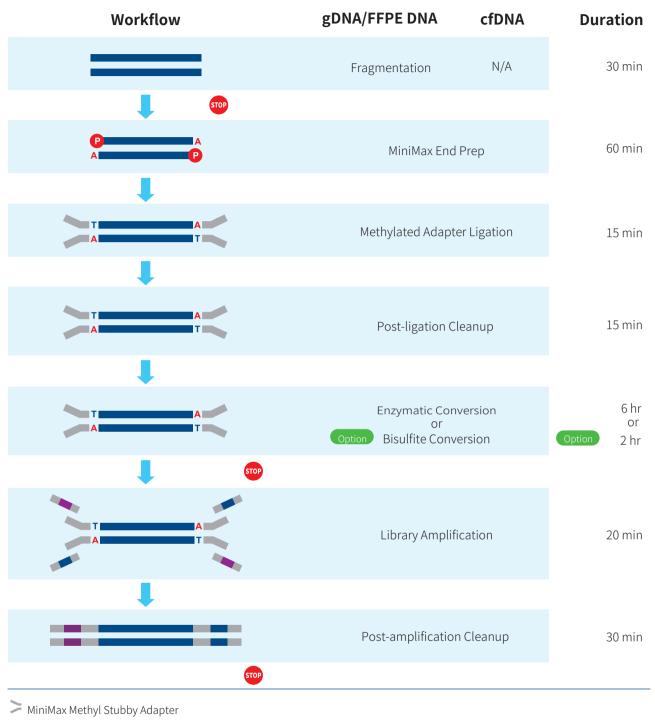
Catalog#	Item	Package/Storage
1002501	MiniMax Methyl Library Preparation Module, 24 rxn	Box1 / -25 ~ -15°C Box2 / 2 ~ 8°C
1002502	MiniMax Methyl Library Preparation Module, 96 rxn	Box1 / -25 ~ -15°C Box2 / 2 ~ 8°C

Package#	Component	Volume 1002501 24 rxn	Volume 1002502 96 rxn	Storage
Box1	MiniMax End Prep Buffer	180 μL	690 μL	-12 ~ -52°C
	MiniMax End Prep Enzyme	120 μL	460 μL	-12 ~ -52°C
	MiniMax Ligation Buffer	750 μL	2×1,500 μL	-12 ~ -52°C
	MiniMax DNA Ligase	60 μL	230 μL	-12 ~ -52°C
	2X HiFi-Methyl PCR Master Mix	720 μL	2×1,600 μL	-12 ~ -52°C
	Nuclease Free Water	2.5 mL	8 mL	2 ~ 8°C
	TE Buffer	1 mL	4 mL	2 ~ 8°C
Box2	MiniMax SP Beads	4 mL	15 mL	2 ~ 8°C

Apostle MiniMax Methyl Stubby Adapter (UDI) Module (for Illumina®)

Catalog#	ltem A	Methyl Stubby Adapter Volume	UDI-Index Primer Mix # & Volume	Amplification Primer Mix II Volume	Storage
1003331	MiniMax Methyl Stubby Adapter (UD Module Set A1 (for Illumina®), 24 rxr	, (UIII	1-12 & 12×15 μL (Tube)	20 μL	-60 ~ -10°C
1003341	MiniMax Methyl Stubby Adapter (UE Module Set B1 (for Illumina®), 96 rxr	. 230 UL	1-24 & 24×25 μL (Tube)	75 μL	-60 ~ -10°C
1003342	MiniMax Methyl Stubby Adapter (UE Module Set B2 (for Illumina®), 96 rxr	220 11 2	25-48 & 24×25 μL (Tube)	75 μL	-60 ~ -10°C

Equipment and Consumable


Equipment

Item	Description	
Ultrasonicator	Covaris™ M220 Focused-ultrasonicator or equivalent	
Digital electrophoresis	Agilent 2100 Electrophoresis Bioanalyzer® system (Cat # G2939AA) Agilent 2200 TapeStation system (Cat # G2965AA) Bioptic Qsep100 capillary gel electrophoresis system or equivalent	
Pipettor	General laboratory supplier	
Thermal cycler	General laboratory supplier	
Benchtop centrifuge	General laboratory supplier	
Microcentrifuge	General laboratory supplier	
Vortex mixer	General laboratory supplier	
Magnet stand	Thermo Fisher DynaMag [™] -2 Magnet (Cat # 12321D) Thermo Fisher DynaMag [™] -96 Side Magnet(Cat # 12331D) BORTHEE-96 Side Magnet (Cat # MAG-96-11) or equivalent	
Qubit fluorometer	Thermo Fisher Qubit™ 3.0 Fluorometer (Cat # Q33216) or equivalent	
Timer	General laboratory supplier	

Consumable

Item	Description
Enzymatic conversion module	NEBNext® Enzymatic Methyl-seq Conversion Module (Cat #E7125S/L)
Bisulfite conversion module	QIAGEN EpiTect® Fast DNA Bisulfite Kit (Cat #59824/59826) or equivalent
Absolute Ethanol	General laboratory supplier, analytical grade
0.2 mL PCR Tube	Axygen MAXYMum Recovery™ PCR Tubes, 0.2 mL flat cap(Cat # PCR-02-L-C) or equivalent

Workflow

Option Optional Step

Protocol

Sample Requirement

Sample Quality: gDNA without serious degradation (tested by gel electrophoresis analysis); cfDNA without large fragment contamination; FFPE gDNA with average size > 500 bp and peak size at 15 Kb.

Input Amount: 10-1000 ng; The Qubit fluorometer or a similar fluorometric method is recommended for determining the dsDNA concentration.

Sample Purity: High quality DNA input, with OD₂₆₀/OD₂₈₀=1.8-2.0 and OD₂₆₀/OD₂₃₀=2.0-2.5.

Step 1: Fragmentation

Please use the optimized protocol according to your fragmentation equipment and reagents. This kit has been validated on the DNA fragmented by the Covaris™ ultrasonicator.

• Note: Enzymatic fragmentation is forbidden in Methyl-Seq library preparation. For cfDNA, this step can be skipped.

M Important notes:

Please adjust the size distribution according to the Illumina sequencing mode including SE75, SE150, PE150, PE300, etc.

Safe Stopping Point: The fragmented DNA can be stored at 2 ~ 8°C overnight or -25 ~ -15°C for longer.

• The DNA library with 200-250 bp on average is recommended for targeted sequencing.

Step 2: End Repair and A-Tailing

- 1. Thaw MiniMax End Prep Buffer at room temperature. Mix thoroughly and centrifuge to collect the contents. Keep the tube on ice.
- 2. Thaw MiniMax End Prep Enzyme on ice. Briefly vortex and centrifuge to collect the contents.
- 3. Set up each reaction in a 0.2 mL PCR tube on ice as follows:

Fragmented DNA/cfDNA	40 μL
MiniMax End Prep Buffer	6 μL
MiniMax End Prep Enzyme	4 μL
Total	50 μL

- Note: If the input DNA is less than 40 μL, add Nuclease Free Water to a total volume of 40 μL.
- 4. Mix thoroughly and centrifuge to briefly collect the contents.
- 5. Incubate the tube in the thermal cycler programmed as follows, with the heated lid set at 75°C. Make sure the thermal cycler is stabilized at 20°C before loading.

20°C	30 min
65°C	30 min
10°C	Hold

Note: The heated lid should be left open during the incubation at 20°C.

Step 3: Adapter Ligation

- 1. Thaw MiniMax Ligation Buffer at room temperature, mix thoroughly and centrifuge to collect the contents. Keep the tube on ice.
- Oote: The MiniMax Ligation Buffer is viscous. Please pipette slowly and carefully to ensure the expected volume.
- 2. Thaw MiniMax DNA Ligase on ice. Briefly vortex and centrifuge to collect the contents.
- 3. Remove the tube in **Step 2** from the thermal cycler and set up each reaction on ice as follows:

Total	80 μL
MiniMax DNA Ligase ²	2 μL
MiniMax Ligation Buffer 2	26 μL
MiniMax Methyl Stubby Adapter (as appropriate) 1	2 μL
End Repair & A-Tailing Product	50 μL

- Note 1: Make sure to add MiniMax Methyl Stubby Adapter before other reagents to avoid the adapter self-ligation.
- Note ²: If working on multiple samples, prepare Ligation Master Mix in advance with MiniMax Ligation Buffer and MiniMax DNA Ligase.

M Important note:

• The dilution ratio of MiniMax Methyl Stubby Adapter according to the amount of input DNA is recommended as follows:

Input DNA (Fragmented DNA/cfDNA)	Adapter Stock Concentration	Dilution Ratio (250 bp*)	Dilution Ratio (160 bp*)	Adapter Insert Molar Ratio
1000 ng	15 μΜ	*	*	5:1-3:1
500 ng	15 μΜ	*	*	10:1-6:1
250 ng	15 μΜ	*	*	25:1–15:1
100 ng	15 μΜ	*	*	50:1–30:1
50 ng	15 μΜ	*	*	100:1-60:1
25 ng	15 μΜ	2	2	100:1-60:1
10 ng	15 μΜ	5	4	100:1-75:1

^{* 250} bp is commonly used for gDNA fragmentation. 160 bp is the peak size observed for cfDNA in plasma.

- Note: When the input DNA \leq 25 ng, the adapter should be diluted prior to use.
- 4. Mix thoroughly and centrifuge to collect the contents.
- 5. Incubate the tube in the thermal cycler programmed as follows . Make sure the thermal cycler is stabilized at 20°C before loading.

20°C	15 min	
10°C	Hold	

• Note: The heated lid should be left open.

Step 4: Post-ligation Cleanup

- 1. Equilibrate the MiniMax SP Beads to room temperature for a minimum of 30 min. Thoroughly vortex the beads prior to use.
- 2. Add 44 μ L of MiniMax SP Beads to the same tube from **Step 3**. Mix thoroughly and then incubate the tube at 25°C for 5-10 min.
- 3. Briefly centrifuge and then place the tube on the magnet stand until the solution is clear (~5 min). Carefully remove and discard the supernatant without disturbing the beads.
- Note: The incubation time should be adjusted according to the actual performance of various magnet stands to ensure that the solution is completely clarified.
- 4. Keeping the tube on the magnet stand, add 150 μ L of 80% freshly prepared ethanol without disturbing the beads. Incubate the tube on the magnet stand at room temperature for 30 sec. Carefully remove and discard the supernatant.
- 5. Repeat step 4 once.
- 6. Briefly centrifuge and then place the tube on the magnet stand. Carefully remove all residual ethanol without disturbing the beads by using a 10-μL pipette tip.
- 7. Open the lid, dry the beads on the magnet stand at 25°C for 2-3 min
- Note: Over-dried beads may be more difficult to suspend.
- 8. Remove the tube off the magnet stand. Add 21 μ L of Nuclease Free Water to into the tube and then incubate at 25°C for 2 min.
- 9. Briefly centrifuge and then place the tube on the magnet stand. Incubate for 2 min until the solution is clear. Transfer $20 \,\mu\text{L}$ of the clear supernatant to a new 0.2 mL PCR tube. Avoid transfer of MiniMax SP beads.

Safe Stopping Point: The library can be stored at 2 ~ 8°C overnight or -25 ~ -15°C for longer.

Step 5: Library Conversion

This kit has been validated to be highly compatible with bisulfite conversion and enzymatic conversion methods. The recommendations of choice are listed as follows:

Input DNA	NEBNext® Enzymatic Methyl-seq Conversion Module (E7125S/L)	QIAGEN EpiTect® Bisulfite kit (59824)
10-200 ng	* * *	*
200-500 ng	*	* * *
500-1000 ng	N/A	* *

- The enzymatic conversion method is recommended with input DNA ranging from 10-200 ng. For more than 200 ng of input DNA, the bisulfite conversion method is recommended.
- 1. Please proceed the conversion workflow as requested with the purified DNA library from step 4.
- 2. Dissolve the converted products with 20 μ L of TE Buffer.
- As the converted products are single-stranded phase, the subsequent workflow should be proceeded as quickly as possible.

Step 6: Library Amplification

- 1. Thaw 2X HiFi-Methyl PCR Master Mix and MiniMax UDI-Index Primer Mix on ice. Mix thoroughly and centrifuge to collect the contents.
- 2. Set up each library amplification reaction in a 0.2 mL PCR tube on ice as follows:

Total	50 μL
MiniMax UDI-Index Primer Mix	5 μL
2X HiFi-Methyl PCR Master Mix	25 μL
The Converted Product of Step 5	20 μL

- 3. Mix thoroughly and centrifuge to collect the contents.
- 4. Incubate the tube in the thermal cycler programmed as follows, with the heated lid set at 105°C.

98°C	2 min	
98°C 60°C 72°C	15 sec 30 sec 30 sec	Varies (refer to the following table)
72°C 4°C	2 min Hold	

Input DNA	Number of Cycles Recommended (Enzymatic Conversion)		
(Fragmented DNA/cfDNA)	Library Yield ≥ 500 ng	Library Yield ≥ 1,000 ng	
500 ng	4–5	5–6	
200 ng	5–6	6–7	
100 ng	6–7	7–8	
50 ng	7–8	8–9	
10 ng	9–10	10-11	

Input DNA	Number of Cycles Recommended (Bisulfite Conversion)	
(Fragmented DNA/cfDNA)	Library Yield ≥ 500 ng	Library Yield ≥ 1,000 ng
1000 ng	4–5	5–6
500 ng	5–6	6–7
200 ng	6–7	7–8
100 ng	7–8	8–9
50 ng	8–9	9–10
10 ng	10-11	11–12

M Important notes:

- For targeted sequencing with MiniMax Hybrid Capture Reagents (Cat # 1005101), the library yield should reach 500 ng.
- If bisulfite conversion has been performed, 1 or 2 additional cycles are necessary because of the DNA damage caused by the bisulfite conversion.

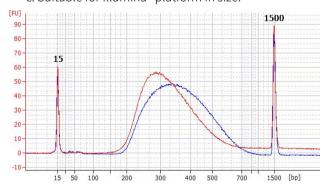
Step 7: Post-amplification Cleanup

- 1. Add 50 μ L of MiniMax SP Beads into the Library Amplification tube. Mix thoroughly and then incubate the tube at 25°C for 5-10 min.
- 2. Briefly centrifuge and then place the tube on a magnet stand until the solution is clear (~5 min). Carefully remove and discard the supernatant without disturbing the beads.

• Note: The incubation time should be adjusted according to the actual performance of various magnet stands to ensure that the solution is completely clarified.

- 3. Keeping the tube on the magnet stand, add 150 μ L of freshly prepared 80% ethanol without disturbing the beads. Incubate the tube on the magnet stand at room temperature for 30 sec. Carefully remove and discard the ethanol.
- 4. Repeat step 3 once.
- 5. Briefly centrifuge and then place the tube on the magnet stand. Carefully remove all residual ethanol without disturbing the beads by using a 10-µL pipette tip.
- 6. Dry the beads on the magnet stand at room temperature for 5 min.

• Note: Over-dried beads may be more difficult to suspend.


- 7. Remove the tube off the magnet stand. Thoroughly resuspend the beads in 30 μ L of TE buffer. Incubate the tube at 25°C for 2 min.
- 8. Briefly centrifuge and place the tube on the magnet stand. Incubate for 2 min until the solution is clear. Transfer the clear supernatant to a new 0.2 mL PCR tube. Avoid transfer of MiniMax SP Beads.

Safe Stopping Point: The library can be stored at 2 ~ 8°C overnight or -25 ~ -15°C for longer.

Step 8: Library Evaluation

- 1. The Qubit™ fluorometer or qPCR is recommended for library quantification.
- 2. The Bioanalyzer® 2100 (Agilent) or Osep 100 (Bioptic) is recommended for size distribution analysis.
- 3. The quality control standards include:
 - a. No adapter dimers and free adapters.
 - b. Relatively concentrated size distribution.
 - c. Suitable for Illumina® platform in size.

Fig 1. Size distribution of library prepared by using Apostle MiniMax Methyl Library Preparation Module coupled with Apostle MiniMax Methyl Stubby Adapter (UDI) Module (for Illumina®). The libraries were prepared from 50 ng of fragmented gDNA and were converted by using EM method with 7 PCR cycles (blue) and BS method with 9 PCR cycles (red), respectively.

Step 9: Sequencing

The library is ready for sequencing on Illumina platforms.

In the period of hybridization & wash, the incubation temperature should be optimized from **65°C** to **63°C**. Please contact Nanodigmbio (support@njnad.com) for details.

Appendix 1: MiniMax Methyl Stubby Adapter (UDI) (for Illumina®) Index Information

The index sequences of MiniMax UDI-Index Primer Mix in MiniMax Methyl Stubby Adapter (UDI) Module (for Illumina®) are listed as follows:

UDI-Primer-Mix	i5 index (HiSeq® 2000/2500, MiSeq®, NovaSeq® v1.0 systems)	i5 index (HiSeq® 3000, 4000, HiSeq® X, NextSeq®, MiniSeq®, NovaSeq® v1.5 systems)	i7 index (all Illumina® systems)
UDI-Primer-Mix.01	ATATGCGC	GCGCATAT	CTGATCGT
UDI-Primer-Mix.02	TGGTACAG	CTGTACCA	ACTCTCGA
UDI-Primer-Mix.03	AACCGTTC	GAACGGTT	TGAGCTAG
UDI-Primer-Mix.04	TAACCGGT	ACCGGTTA	GAGACGAT
UDI-Primer-Mix.05	GAACATCG	CGATGTTC	CTTGTCGA
UDI-Primer-Mix.06.	CCTTGTAG	CTACAAGG	TTCCAAGG
UDI-Primer-Mix.07	TCAGGCTT	AAGCCTGA	CGCATGAT
UDI-Primer-Mix.08	GTTCTCGT	ACGAGAAC	ACGGAACA
UDI-Primer-Mix.09	AGAACGAG	CTCGTTCT	CGGCTAAT
UDI-Primer-Mix.10	TGCTTCCA	TGGAAGCA	ATCGATCG
UDI-Primer-Mix.11	CTTCGACT	AGTCGAAG	GCAAGATC
UDI-Primer-Mix.12	CACCTGTT	AACAGGTG	GCTATCCT
UDI-Primer-Mix.13	ATCACACG	CGTGTGAT	TACGCTAC
UDI-Primer-Mix.14	CCGTAAGA	TCTTACGG	TGGACTCT
UDI-Primer-Mix.15	TACGCCTT	AAGGCGTA	AGAGTAGC
UDI-Primer-Mix.16	CGACGTTA	TAACGTCG	ATCCAGAG
UDI-Primer-Mix.17	ATGCACGA	TCGTGCAT	GACGATCT
UDI-Primer-Mix.18	CCTGATTG	CAATCAGG	AACTGAGC
UDI-Primer-Mix.19	GTAGGAGT	ACTCCTAC	CTTAGGAC
UDI-Primer-Mix.20	ACTAGGAG	CTCCTAGT	GTGCCATA
UDI-Primer-Mix.21	CACTAGCT	AGCTAGTG	GAATCCGA
UDI-Primer-Mix.22	ACGACTTG	CAAGTCGT	TCGCTGTT
UDI-Primer-Mix.23	CGTGTGTA	TACACACG	TTCGTTGG
UDI-Primer-Mix.24	GTTGACCT	AGGTCAAC	AAGCACTG
UDI-Primer-Mix.25	ACTCCATC	GATGGAGT	CCTTGATC
UDI-Primer-Mix.26	CAATGTGG	CCACATTG	GTCGAAGA
UDI-Primer-Mix.27	TTGCAGAC	GTCTGCAA	ACCACGAT
UDI-Primer-Mix.28	CAGTCCAA	TTGGACTG	GATTACCG
UDI-Primer-Mix.29	ACGTTCAG	CTGAACGT	GCACAACT
UDI-Primer-Mix.30.	AACGTCTG	CAGACGTT	GCGTCATT
UDI-Primer-Mix.31	TATCGGTC	GACCGATA	ATCCGGTA

UDI-Primer-Mix	i5 index (HiSeq® 2000/2500, MiSeq®, NovaSeq® v1.0 systems)	i5 index (HiSeq® 3000, 4000, HiSeq® X, NextSeq®, MiniSeq®, NovaSeq® v1.5 systems)	i7 index (all Illumina® systems)
UDI-Primer-Mix.32	CGCTCTAT	ATAGAGCG	CGTTGCAA
UDI-Primer-Mix.33	GATTGCTC	GAGCAATC	GTGAAGTG
UDI-Primer-Mix.34	GATGTGTG	CACACATC	CATGGCTA
UDI-Primer-Mix.35	CGCAATCT	AGATTGCG	ATGCCTGT
UDI-Primer-Mix.36	TGGTAGCT	AGCTACCA	CAACACCT
UDI-Primer-Mix.37	GATAGGCT	AGCCTATC	TGTGACTG
UDI-Primer-Mix.38	AGTGGATC	GATCCACT	GTCATCGA
UDI-Primer-Mix.39	TTGGACGT	ACGTCCAA	AGCACTTC
UDI-Primer-Mix.40	ATGACGTC	GACGTCAT	GAAGGAAG
UDI-Primer-Mix.41	GAAGTTGG	CCAACTTC	GTTGTTCG
UDI-Primer-Mix.42	CATACCAC	GTGGTATG	CGGTTGTT
UDI-Primer-Mix.43	CTGTTGAC	GTCAACAG	ACTGAGGT
UDI-Primer-Mix.44	TGGCATGT	ACATGCCA	TGAAGACG
UDI-Primer-Mix.45	ATCGCCAT	ATGGCGAT	GTTACGCA
UDI-Primer-Mix.46	TTGCGAAG	CTTCGCAA	AGCGTGTT
UDI-Primer-Mix.47	AGTTCGTC	GACGAACT	GATCGAGT
UDI-Primer-Mix.48	GAGCAGTA	TACTGCTC	ACAGCTCA
UDI-Primer-Mix.49	ACAGCTCA	TGAGCTGT	GAGCAGTA
UDI-Primer-Mix.50	GATCGAGT	ACTCGATC	AGTTCGTC
UDI-Primer-Mix.51	AGCGTGTT	AACACGCT	TTGCGAAG
UDI-Primer-Mix.52	GTTACGCA	TGCGTAAC	ATCGCCAT
UDI-Primer-Mix.53	TGAAGACG	CGTCTTCA	TGGCATGT
UDI-Primer-Mix.54	ACTGAGGT	ACCTCAGT	CTGTTGAC
UDI-Primer-Mix.55	CGGTTGTT	AACAACCG	CATACCAC
UDI-Primer-Mix.56	GTTGTTCG	CGAACAAC	GAAGTTGG
UDI-Primer-Mix.57	GAAGGAAG	CTTCCTTC	ATGACGTC
UDI-Primer-Mix.58.	AGCACTTC	GAAGTGCT	TTGGACGT
UDI-Primer-Mix.59.	GTCATCGA	TCGATGAC	AGTGGATC
UDI-Primer-Mix.60	TGTGACTG	CAGTCACA	GATAGGCT
UDI-Primer-Mix.61	CAACACCT	AGGTGTTG	TGGTAGCT
UDI-Primer-Mix.62	ATGCCTGT	ACAGGCAT	CGCAATCT
UDI-Primer-Mix.63	CATGGCTA	TAGCCATG	GATGTGTG
UDI-Primer-Mix.64	GTGAAGTG	CACTTCAC	GATTGCTC
UDI-Primer-Mix.65	CGTTGCAA	TTGCAACG	CGCTCTAT

UDI-Primer-Mix	i5 index (HiSeq® 2000/2500, MiSeq®, NovaSeq® v1.0 systems)	i5 index (HiSeq® 3000, 4000, HiSeq® X, NextSeq®, MiniSeq®, NovaSeq® v1.5 systems)	i7 index (all Illumina® systems)
UDI-Primer-Mix.66	ATCCGGTA	TACCGGAT	TATCGGTC
UDI-Primer-Mix.67	GCGTCATT	AATGACGC	AACGTCTG
UDI-Primer-Mix.68	GCACAACT	AGTTGTGC	ACGTTCAG
UDI-Primer-Mix.69	GATTACCG	CGGTAATC	CAGTCCAA
UDI-Primer-Mix.70	ACCACGAT	ATCGTGGT	TTGCAGAC
UDI-Primer-Mix.71	GTCGAAGA	TCTTCGAC	CAATGTGG
UDI-Primer-Mix.72	CCTTGATC	GATCAAGG	ACTCCATC
UDI-Primer-Mix.73	AAGCACTG	CAGTGCTT	GTTGACCT
UDI-Primer-Mix.74	TTCGTTGG	CCAACGAA	CGTGTGTA
UDI-Primer-Mix.75	TCGCTGTT	AACAGCGA	ACGACTTG
UDI-Primer-Mix.76	GAATCCGA	TCGGATTC	CACTAGCT
UDI-Primer-Mix.77	GTGCCATA	TATGGCAC	ACTAGGAG
UDI-Primer-Mix.78	CTTAGGAC	GTCCTAAG	GTAGGAGT
UDI-Primer-Mix.79	AACTGAGC	GCTCAGTT	CCTGATTG
UDI-Primer-Mix.80	GACGATCT	AGATCGTC	ATGCACGA
UDI-Primer-Mix.81	ATCCAGAG	CTCTGGAT	CGACGTTA
UDI-Primer-Mix.82	AGAGTAGC	GCTACTCT	TACGCCTT
UDI-Primer-Mix.83	TGGACTCT	AGAGTCCA	CCGTAAGA
UDI-Primer-Mix.84	TACGCTAC	GTAGCGTA	ATCACACG
UDI-Primer-Mix.85	GCTATCCT	AGGATAGC	CACCTGTT
UDI-Primer-Mix.86	GCAAGATC	GATCTTGC	CTTCGACT
UDI-Primer-Mix.87	ATCGATCG	CGATCGAT	TGCTTCCA
UDI-Primer-Mix.88	CGGCTAAT	ATTAGCCG	AGAACGAG
UDI-Primer-Mix.89	ACGGAACA	TGTTCCGT	GTTCTCGT
UDI-Primer-Mix.90	CGCATGAT	ATCATGCG	TCAGGCTT
UDI-Primer-Mix.91	TTCCAAGG	CCTTGGAA	CCTTGTAG
UDI-Primer-Mix.92	CTTGTCGA	TCGACAAG	GAACATCG
UDI-Primer-Mix.93	GAGACGAT	ATCGTCTC	TAACCGGT
UDI-Primer-Mix.94	TGAGCTAG	CTAGCTCA	AACCGTTC
UDI-Primer-Mix.95	ACTCTCGA	TCGAGAGT	TGGTACAG
UDI-Primer-Mix.96	CTGATCGT	ACGATCAG	ATATGCGC

[•] Note: As the reading mode of the dual index differs in various Illumina® platforms, please select the corresponding sequence information according to the Illumina systems.

Appendix 2: Frequently Asked Question

Problems	Possible Reason	Solution
	Inaccurate quantification of input DNA	The Qubit fluorometer is recommended for the quantification of fragmented DNA.
Low library yield	a. Low input DNA with BS module. b. Compared with the EM module, the BS module needs 1 or 2 additional PCR cycles to reach the similar recovery efficiency.	Increase PCR cycles; Convert low input DNA with EM module.
	Contamination of post-converted library	a. Use filter tips.b. Replace the gloves and change experiment table after the conversion process.
Low conversion efficiency (<99%) of unmethylated cytosine	a. The BS module is out of date.b. The oxidation-caused crystallization of bisulfite may significantly inhibit the conversion efficiency.	a. Use the BS module within the period of validity.b. Minimize the exposure to air.
	Input DNA is too much.	For EM module, the input DNA should be under 200 ng.

Apostle, Inc.

Add: 3589 Nevada Street, Pleasanton, CA 94566

Tel: 888.305.3218 | Service: support@apostlebio.com | Web: www.apostlebio.com