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Abstract

Objective: Plasma  cell-free  DNA  (cfDNA)  methylation  has  shown  potential  in  the  detection  and  prognostic

testing  of  multiple  cancers.  Here,  we  comprehensively  investigate  the  performance  of  cfDNA  methylation  for

gastric cancer (GC) detection and prognosis.

Methods: GC-specific  differentially  methylated  regions  (DMRs)  were  identified  by  sequencing  56  GC  tissues

and 59 normal adjacent tissues (NATs). We then performed targeted bisulfite sequencing of cfDNA from 294 GC

and  446  non-gastric  cancer  (NGC)  plasma  samples,  identifying  179  DMRs  that  overlapped  with  those  in  tissue

samples. The efficacy of plasma cfDNA methylation markers for GC detection and prognosis was evaluated.

Results: Based on the 179 DMRs overlapping with those in tissue samples, the random forest (RF) model using

28 DMRs achieved an area under the curve (AUC) of 0.998 in the training cohort, whereas further refinement to

the top 6 DMRs resulted in an AUC of 0.985. Consistent results were obtained in the validation cohort (28 DMR

AUC:  0.985;  6  DMR  AUC:  0.988).  Support  vector  machine  (SVM)  and  logistic  regression  (LR)  models  also

demonstrated  robust  performance.  Additionally,  an  11-DMR  signature  was  developed  for  prognostic  prediction,

successfully identifying high-risk GC patients with significantly shorter overall survival.

Conclusions: Our study highlights  the potential  utility  of  cfDNA methylation markers  for  both the detection

and prognostication of GC.
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Introduction

According to the GLOBOCAN 2022 report, gastric cancer
(GC)  ranks  fifth  globally  in  terms  of  both  incidence  and
cancer-related  mortality  (1).  Remarkably,  nearly  half  of
new  GC  cases  and  deaths  worldwide  have  occurred  in
China  (2).  Between  2002  and  2015,  the  five-year  relative
survival rate for patients with GC in China increased from
27.4%  to  35.1%  (3).  However,  this  rate  remains
significantly lower than that reported in Japan (80.1%) and
South  Korea  (75.9%),  primarily  because  of  differences  in
the  timing  of  clinical  diagnosis  (4,5).  Currently,  GC
screening  primarily  relies  on  endoscopic  examination  and
serum  tumor  markers  (6).  Although  endoscopic  biopsy  is
the gold standard for diagnosing GC, it is an expensive and
invasive  procedure.  Moreover,  serum  markers  such  as
carcinoembryonic  antigen  (CEA),  carbohydrate  antigen
(CA)  19-9,  and  alpha-fetoprotein  (AFP)  have  shown  poor
sensitivity  for  early-stage  GC  and  lack  specificity  for  GC
(7).  Therefore,  identifying biomarkers  associated with  GC
occurrence  and  progression  has  become  crucial  for  the
early  detection  of  GC  and  the  assessment  of  patient
prognosis.

In recent years, liquid biopsy has gained prominence for
molecular analysis in cancer, serving various functions, such
as early detection, prognostic assessment, tumor burden
analysis, and predicting response and resistance to targeted
therapy,  chemotherapy,  and immunotherapy,  including
chimeric antigen receptor T-cell therapy (8). Circulating
extracellular nucleic acids, such as cell-free DNA (cfDNA),
are key analytes for liquid biopsy and can be isolated from
plasma. Numerous studies have demonstrated the potential
of  cfDNA  as  a  biomarker  for  cancer  diagnosis  and
screening  (9).  For  instance,  Chung  et  al.  reported  that
blood-based cfDNA testing has a sensitivity of 83.1% for
colorectal  cancer  (CRC)  and a  specificity  of  89.6% for
advanced  colorectal  neoplasia  (CRC  or  advanced  pre-
cancerous  lesions)  (10).  Liu et  al.  reported that  cfDNA
exhibits a specificity of 99.3% [95% confidence interval
(95% CI): 98.3%−99.8%] for multicancer detection and a
sensitivity of 67.3% (95% CI: 60.7%−73.3%) for stages
I−III across 12 cancer types, including GC (11). Yu et al.
demonstrated that the area under the curve (AUC) values
for stage I−II GC detection using cfDNA in training and
validation  cohorts  range  from  0.937  to  0.972,  with  a

specificity  of  92.1%  and  a  sensitivity  of  88.2%  (12).
However,  most  existing  studies  have  relied  on  non-
comprehensive biomarker discovery approaches, failing to
translate  tumor  tissue-derived  biomarkers  into  blood
(serum or plasma) and lacking validation in independent
clinical sample cohorts (13).

In  this  study,  we  prospectively  collected  740  blood
samples from four centers, including 294 samples from GC
patients and 446 samples from non-gastric cancer (NGC)
participants. Additionally, we collected 56 GC tissues and
59  normal  adjacent  tissues  (NATs).  By  analyzing
overlapping  differentially  methylated  regions  (DMRs)
between blood and tissue samples, we aimed to develop and
validate these biomarkers to demonstrate their diagnostic
and prognostic value in GC. This research holds promise
for  the  development  of  reliable  biomarkers  that  can be
validated in plasma samples,  providing valuable insights
into the early diagnosis and prognosis of patients with GC.

Materials and methods

Study recruitment and sample collection

This  study  was  conducted  in  accordance  with  ethical
guidelines  and  received  approval  from  the  Institutional
Review  Boards  at  Zhejiang  Cancer  Hospital,  The  Sixth
Affiliated Hospital of Sun Yat-sen University, and Sichuan
Cancer Hospital, as well as from BGI (Approval Nos: IRB-
2023-43,  2021ZSLYEC-326,  SCCHEC-02-2023-166,  and
BGI-IRB 23002).

Patients eligible for inclusion in the GC study, which
occurred between March 1, 2021, and December 31, 2021,
met the following specific criteria: 1) age between 18 and
80  years;  2)  an  Eastern  Cooperative  Oncology  Group
(ECOG) performance score of 0 or 1; and 3) GC diagnosis.
Additionally,  patients  had  not  undergone  any  prior
anticancer  treatments  ( including  chemotherapy,
radiotherapy,  targeted therapy,  surgery,  or  anaesthesia)
before blood collection. Prospective participants and their
families  were  required  to  fully  comprehend  the  study
protocol and express willingness to participate by providing
written informed consent. The exclusion criteria included:
1) concurrent hereditary diseases or other tumors; 2) acute
severe illnesses causing inflammatory reactions or recent
steroid treatments within 14 d before blood sampling; 3)
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receipt of organ, stem cell, or bone marrow transplants; 4)
receipt  of  blood  transfusions  within  the  month  before
enrolment; 5) pregnancy; or 6) engagement in other clinical
trials involving medication within the last 60 d, including
anaesthesia.  Moreover,  individuals  with  severe  cardio-
vascular  diseases,  uncontrollable  infections,  or  other
unmanageable coexisting conditions, as well as those and
their families unable to comprehend the study’s conditions
and objectives, were also excluded.

Blood was drawn before tumor resection for GC patients
and at recruitment for healthy participants and collected in
10  mL  K2EDTA  tubes  (BD,  366643,  Franklin  Lakes,
USA). Plasma was separated from whole blood within 4 h
after blood was drawn and stored at  −80 °C until  DNA
extraction. GC tissues and NATs were collected during
surgery and immediately frozen at −80 °C.

Clinical data collection and serum biomarkers

Demographic  and  clinicopathologic  variables,  including
age,  sex,  tumor  location,  histological  subtype  (Lauren
classification),  tumor  differentiation,  and  pTNM  stage
(AJCC 8th  edition),  were  recorded.  Baseline  serum tumor
markers,  including  AFP  (ng/mL),  CEA  (ng/mL),  and
CA19-9  (U/mL),  were  measured  at  the  participating
hospitals  according to  local  standard operating procedures
using  routine  clinical  immunoassays.  For  GC  patients,
serum markers  were  measured  prior  to  surgery  and  at  the
same time as plasma was collected. For NGC participants,
markers were measured at enrolment.

DNA extraction and quality control

Plasma  cfDNA  extraction  was  performed  utilizing  the
Apostle  MiniMax  High-Efficiency  cfDNA  Isolation  Kit
(Apostle,  A17622CN,  Santa  Clara,  USA).  Genomic  DNA
(gDNA)  from  GC  tumors  and  corresponding  NATs  was
extracted  using  the  MagPure  Buffy  Coat  DNA  Midi  KF
Kit  (Magen,  D3537-02,  Guangzhou,  China).  The
quantification of DNA concentration was performed using
the  Qubit™  dsDNA  HS  Assay  Kit  (Thermo  Fisher
Scientific,  Q32854,  Waltham,  USA).  The  integrity  of  the
cfDNA  was  assessed  using  an  Agilent  High-Sensitivity
DNA  Kit  (Agilent  Technologies,  5067-4626,  Santa  Clara,
USA)  on  an  Agilent  2100  Bioanalyzer  (Agilent
Technologies).

Library preparation

For  bisulfite  sequencing,  fragmented  genomic  DNA

(achieved  through  sonication)  or  cfDNA  samples  were
subjected to sodium bisulfite treatment using the EZ DNA
Methylation-Gold™  Kit  (Zymo  Research,  D5006,  Irvine,
USA).  The  bisulfite-converted  DNA  fragments  were  then
ligated  to  sequencing  adaptors  using  a  single-stranded
DNA-based  library  preparation  method,  as  previously
described.  To  enrich  genomic  regions  of  interest  in
cfDNA, targeted capture reactions were conducted using a
custom-designed  panel  with  a  size  of  449k  covering  37k
CpG  sites  (Roche,  KAPA  HyperExplore,  Basel,
Switzerland).  Both  libraries,  with  and  without  capture,
subsequently underwent amplification procedures and were
sequenced on the MGISEQ-2000 platform using 2×100 bp
paired-end sequencing.

Identification of DMRs

A Bayesian hierarchical model with smoothing was applied
to  56  GC  tissues  and  59  NATs  to  identify  DMRs  as
described previously  (14).  The DMRs were  defined as  the
regions satisfying the following criteria: a difference in the
absolute  methylation  ratio  between  cancer  and  normal
tissues >0.2, a region size ≥50 bp, the presence of ≥3 CpG
sites within the region, and a percentage of CpG sites with
significant P values ≥80%. DMRs were annotated using the
R package annotatr (Version 1.34.0, https://bioconductor.org/
packages/annotate)  (15).  Gene  Ontology  (GO)  analyses
were  conducted  using  the  R  package  clusterProfiler
(Version  4.16.0; https://bioconductor.org/packages/
clusterProfiler) (16).

Correlation  analysis  of  DMR  methylation  and  gene
expression

Paired methylation and mRNA expression data of stomach
adenocarcinoma  tissue  samples  were  obtained  from  The
Cancer  Genome  Atlas  (TCGA)  database  using  the
TCGAbiolinks  R  package  (Version  2.36.0; https://
bioconductor.org/packages/TCGAbiolinks).  The  ChAMP
R  package  was  used  to  filter  and  normalize  methylation
data,  and  mRNA  expression  data  were  standardized  as
Transcripts  Per  Million  (TPM).  Spearman  correlation
between  the  median  methylation  level  in  each  DMR  and
the expression level of the nearest gene was then calculated,
and  a  P  value  <0.05  was  considered  to  indicate  statistical
significance.

Diagnostic model of plasma DMRs for GC

The  regional  methylation  ratio  was  calculated  per  DMR
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for each cfDNA sample. Tenfold cross-validation (CV) was
performed  for  feature  selection  using  the  Out-of-Bag
(OOB)  error  rate  in  the  randomForest  package.  Three
diagnostic  models,  namely,  random  forest  (RF),  support
vector  machine  (SVM),  and  logistic  regression  (LR),  were
constructed  using  the  randomForest,  e1071  and  stats
packages  in  R.  Model  robustness  was  evaluated by 10-fold
CV  repeated  10  times  in  the  training  cohort.  Diagnostic
performance  was  evaluated  by  the  area  under  the  receiver
operating characteristic (ROC) curve (AUC) and sensitivity
analysis.  Threshold  values  were  determined  using  the
Youden  index.  Model  performance  was  validated  in  the
testing set.

Prognostic model of DMRs for GC

To  identify  methylation-based  prognostic  markers,  the
samples  were  randomly  divided  into  training  and  testing
sets  at  a  split  ratio  of  3:1.  To  construct  the  prognostic
signature,  overall  survival  (OS)  was  used  as  the  endpoint.
Survival-related DMRs were preselected by univariate Cox
regression  (P<0.001),  followed  by  least  absolute  shrinkage
and  selection  operator  (LASSO)  Cox  regression  with  10-
fold  CV  to  determine  the  optimal  λ.  A  multivariable  Cox
model  was  then  fitted  using  the  selected  DMRs,  and  an
individual  risk  score  was  calculated  as  the  linear  predictor
(risk  score  =  Σβᵢ ×  DMR ᵢ).  The optimal  cut-off  of  the  risk
score  was  identified  in  the  training  set  using  maximally
selected  rank  statistics  (log-rank-based)  and  was  applied
unchanged  to  the  testing  set  to  define  low- and  high-risk
groups. Kaplan-Meier curves, hazard ratios (HRs), and the
concordance  index  (C-index)  were  used  to  evaluate
prognostic performance.

Statistical analysis

Statistical  analyses  were  conducted  in  R.  Spearman’s  rank
correlation  was  applied  to  examine  associations  between
DNA  methylation  and  gene  expression.  Diagnostic
models—RF,  SVM,  and  LR—were  assessed  by  ROC
analysis with 10-fold cross-validation. Prognostic modeling
used  univariable  and  multivariable  Cox  proportional
hazards  regression,  with  LASSO  for  feature  selection.
Survival  outcomes  were  evaluated  using  Kaplan-Meier
estimates.  Unless  otherwise  specified,  two-sided  P<0.05
were considered statistically significant.

Results

Study design and participants

In  this  study,  a  total  of  740  blood samples  were  collected,
consisting  of  294  samples  from  GC  patients  and  446
samples  from  NGC  individuals,  who  were  age- and  sex-
matched  (Figure  1).  The  training  dataset  comprised  174
GC  samples  and  201  NGC  samples,  all  of  which  were
sourced from Zhejiang Cancer Hospital.  The independent
testing  dataset  included  64  GC  samples  and  149  NGC
samples from The Sixth Affiliated Hospital of Sun Yat-sen
University, 56 GC samples from Sichuan Cancer Hospital,
and 96 NGC samples from BGI (Table 1). Additionally, we
collected 56 GC tissue samples and 59 NATs from patients
who underwent GC surgery. Age and sex distributions were
comparable  between  the  GC  and  NGC  groups  in  both
cohorts  (training  cohort:  age  62.79±11.76 vs.  62.72±9.53
years;  male  73.6% vs.  79.1%;  testing  cohort:  age
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Figure  1 Flow  diagram  of  the  study.  NAT,  normal  adjacent  tissue;  GC,  gastric  cancer;  DMR,  differentially  methylated  region;  NGC,
non-gastric cancer; SVM, support vector machine; AUC, area under the curve.

854 Wang et al. GC detection and prognosis via cfDNA

© Chinese Journal of Cancer Research. All rights reserved. www.cjcrcn.org Chin J Cancer Res 2025;37(5):851-864



61.04±12.41 vs.  60.60±11.61 years;  male 67.5% vs.  61.6%;
Table  1).  Among  the  GC  cases,  the  distribution  of  the
pTNM stages in the training cohort was as follows: I (n=57,
32.8%), II (n=47, 27.0%), III (n=47, 27.0%), and IV (n=23,
13.2%).  In  the  testing  cohort,  the  distribution  was  as
follows:  I  (n=22,  18.3%),  II  (n=21,  17.5%),  III  (n=47,

39.2%), and IV (n=30, 25.0%).

Identification of GC-associated epigenomic signatures

To  elucidate  the  epigenomic  alterations  associated  with
GC,  we  performed  genome-wide  bisulfite  sequencing  on
56  GC  tissues  and  59  NATs.  We  identified  630  DMRs,

 

Table 1 Clinicopathological characteristics of participants in training and testing cohorts

Variables
Training cohort [n (%)] Testing cohort [n (%)]

GC (N=174) NGC (N=201) P GC (N=120) NGC (N=245) P

Age (year)

x±s　 62.79±11.76 62.72±9.53 0.949 61.04±12.41 60.60±11.61 0.438

　≥65 85 (48.9) 93 (46.3) 0.618 47 (39.2) 90 (36.7) 0.652

　<65 89 (51.1) 108 (53.7) 73 (60.8) 155 (63.3)

Sex 0.207 0.274

　Male 128 (73.6) 159 (79.1) 81 (67.5) 151 (61.6)

　Female 46 (26.4) 42 (20.9) 39 (32.5) 94 (38.4)

Tumor location

　Upper 31 (17.8) − − 34 (28.3) − −
　Middle 39 (22.4) − − 32 (26.7) − −
　Lower 98 (56.3) − − 53 (44.2) − −
　Whole stomach 1 (0.6) − − − − −
　Unknown 5 (2.9) − − 1 (0.8) − −
Differentiation

　High 8 (4.6) − − 7 (5.8) − −
　Median 26 (14.9) − − 15 (12.5) − −
　Median-low 50 (28.7) − − 21 (17.5) − −
　Low 64 (36.8) − − 45 (37.5) − −
　Unknown 26 (14.9) − − 32 (26.7) − −
Lauren type

　Diffuse 23 (13.2) − − 31 (25.8) − −
　Intestinal 31 (17.8) − − 24 (20.0) − −
　Mixed 13 (7.5) − − 25 (20.8) − −
　Unknown 107 (61.5) − − 40 (33.3) − −
pTNM stage

　I 57 (32.8) − − 22 (18.3) − −
　II 47 (27.0) − − 21 (17.5) − −
　III 47 (27.0) − − 47 (39.2) − −
　IV 23 (13.2) − − 30 (25.0) − −
AFP (ng/mL) 2.75±5.52 2.42±1.81 0.428 31.24±196.71 2.57±3.64 0.025

CEA (ng/mL) 5.16±23.59 1.41±0.96 0.028 18.86±79.17 2.15±1.83 0.001

CA19-9 (U/mL) 95.39±481.34 15.81±2.76 0.022 72.08±218.57 11.69±10.42 <0.001

GC, gastric cancer; NGC, non-gastric cancer; AFP, alpha-fetoprotein; CEA, carcinoembryonic antigen; CA19-9, carbohydrate
antigen 19-9.
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including  538  hypermethylated  and  92  hypomethylated
regions  (Figure  2A,B).  These  DMRs  were  significantly
enriched  in  promoters  (66.35%),  followed  by  distal
intergenic  regions  (14.92%),  exons  (6.67%),  introns
(6.67%),  5’UTRs  (2.22%),  3’UTRs  (2.22%),  and
downstream  regions  (0.95%)  (Figure  2C).  On  the  basis  of
the  results  of  the  Kyoto  Encyclopedia  of  Genes  and
Genomes  (KEGG)  enrichment  analysis,  genes  near  these
DMRs  were  enriched  in  pathways  such  as  the  calcium
signalling pathway, neuroactive ligand-receptor interaction,
cAMP  signalling  pathway,  and  proteoglycans  in  cancer.
These  findings  suggested  that  these  pathways  might  play
crucial  roles  in  the  development  and  progression  of  GC
(Figure 2D).

Correlation  analysis  and  transcriptional  regulation  of
DMRs in plasma and tissue samples

We  performed  targeted  bisulfite  sequencing  of  cfDNA
from 294 GC and 446 NGC plasma samples and identified
179  DMRs  that  overlapped  with  those  in  tissue  samples
(Supplementary Figure S1). Correlation analysis of matched
patient  samples  revealed  a  significant  correlation  between
the methylation ratios of plasma and GC tissues (Figure 2E).

Among the 179 DMRs in the TCGA dataset, 119 were
significantly correlated with the expression levels of nearby
genes,  including  118  hypermethylated  DMRs  and  1
hypomethylated  DMR.  Although  89%  of  the  hyper-
methylated  DMRs  (105  out  of  118)  were  negatively
correlated  with  methylation  expression,  11%  of  the
hypermethylated DMRs (13 out of  118) were positively
correlated with methylation expression (Figure 2F).

GC diagnostic models based on DMR markers

To  distinguish  between  GC  and  healthy  plasma,  we
developed  diagnostic  models  using  DMR  methylation
ratios  as  biomarkers.  We  first  tested  a  RF  model,  which
effectively  classified  plasma  from  patients  with  GC  and

healthy  controls  on  the  basis  of  28  DMRs,  yielding  an
AUC  of  0.998.  Further  refinement  to  the  top  6  DMRs
resulted  in  an  AUC  of  0.985.  Consistent  results  were
obtained in the external validation cohort (28 DMRs AUC:
0.985; 6 DMRs AUC: 0.988),  highlighting the accuracy of
these  markers  (Figure  3A−C).  These  outcomes  underscore
the potential of GC-specific methylation changes in plasma
cfDNA as highly effective biomarkers for diagnosing GCs.
We  further  employed  two  advanced  machine  learning
algorithms: SVM and LR. When the 28 DMRs were used,
the SVM model  yielded an impressive  AUC of  0.990,  and
the  LR  model  achieved  an  equally  remarkable  AUC  of
0.999  (Supplementary  Figure  S2).  To  evaluate  potential
overfitting, we performed stratified 10-fold CV repeated 10
times  on  the  training  cohort  for  RF,  SVM,  and  LR.  The
AUC  distributions  remained  consistently  high,  with
minimal variance across folds and repeats, indicating stable
model performance (Supplementary Figure S3).

Validation using an independent testing set confirmed
the  model’s  effectiveness,  revealing  comparable  AUCs
(0.985 with the RF model, 0.978 with the SVM model, and
0.959  with  the  LR  model;  Figure  3D).  The  RF  model
exhibited exceptional  sensitivity (93.3%) and specificity
(96.3%). Similarly, the performance of the other models
was  comparable,  underscoring  the  reproducibility  and
reliability of the selected features (Supplementary Figure
S4). Intriguingly, this sensitivity remained consistent across
different stages, locations, differentiation and Lauren types
of GC (Figure 3E−G, Supplementary Figure S5).

Performance  of  serum protein  markers  and  methylation-
based diagnostic models

We evaluated  AFP,  CEA,  and CA19-9 individually  and in
combination as a serum 3-marker panel using multivariable
LR.  Individually,  the  AUCs of  the  markers  were  less  than
0.70  across  cohorts.  The  combined  serum 3-marker  panel
achieved AUCs of 0.626 in the training cohort and 0.712 in
the  testing  cohort.  In  contrast,  the  cfDNA  DMR-based

 

Figure 2 DMRs discovered by targeted bisulfite sequencing of GC and NAT tissues. (A) Heatmaps showing DMR methylation levels in
tissue data; (B) Circus plot showing the distribution of GC-specific DMRs across the genome. Red points: hyper-DMRs. Blue points: hypo-
DMRs.  The  circles  from the  outer  circle  to  the  inner  circle  represent  the  overview of  DMRs and  the  area  statistics  of  hypermethylated
regions  and  hypomethylated  regions,  respectively;  (C)  Locations  of  DMRs  in  the  genome;  (D)  KEGG  term  annotation  of  DMRs;  (E)
Correlation of methylation rates between plasma and tumor tissue samples from 3 GC patients; (F) Correlation between DMR methylation
levels and the expression of associated genes. Each lollipop represents a DMR, with red and blue corresponding to hyper- and hypo-DMRs,
respectively.  The  vertical  axis  depicts  the  Spearman  correlation  coefficient  between  the  DMR  methylation  level  and  gene  expression
(P<0.05). DMR, differentially methylated region; GC, gastric cancer; NAT, normal adjacent tissue; KEGG, Kyoto Encyclopedia of Genes
and Genomes.
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models  performed  substantially  better.  The  28-DMR
model  achieved  AUCs  of  0.998  and  0.985  in  the  training
and  testing  cohorts,  respectively,  and  the  6-DMR  model
achieved 0.984 and 0.987, respectively. This superiority was
maintained in early disease. For stage I vs. NGC, the serum
3-marker  panel  achieved  AUCs  of  0.573  in  the  training
cohort  and  0.615  in  the  testing  cohort,  whereas  the  28-
DMR  and  6-DMR  models  achieved  AUCs  of  0.999  and
0.959  and  0.994  and  0.968,  respectively.  For  stage  I−II
disease vs.  NGC,  the  corresponding  AUCs  were  0.600  in
the training cohort and 0.617 in the testing cohort for the
serum 3-marker panel, compared with 0.998 and 0.976 for
the  28-DMR  model  and  0.987  and  0.980  for  the  6-DMR
model, respectively (Figure 4).

Prognosis model for GC

A  total  of  230  stomach  adenocarcinoma  patients  with
complete OS data were randomly assigned in a 3:1 ratio to
a training cohort (n=172) or a testing cohort (n=58) (Figure
5A).  Survival-related  DMRs  were  first  screened  by
univariate  Cox  regression  (P<0.001),  yielding  159
candidates.  Using  LASSO  Cox  regression,  we  derived  an
11-DMR prognostic signature (Supplementary Figure S6). A
multivariable  Cox  model  was  then  fitted  to  compute  an
individual risk score (C-index=0.78; Figure 5B). Among the
eleven  DMRs,  seven  were  associated  with  increased  risk
(HR>1), and four were protective (HR<1). With the use of
maximally selected rank statistics in the training cohort, the
optimal risk score cut-off  was −1.11 (Supplementary Figure
S7),  and  this  was  applied  to  the  testing  cohort  to  define
low- and  high-risk  groups.  In  the  training  cohort,  49
patients were classified as high risk, and 123 were classified
as low risk. In the testing cohort, 21 patients were high risk,
and  37  were  low  risk.  Patients  in  the  high-risk  group  had
significantly shorter OS than those in the low-risk group in
both cohorts (log-rank P<0.01; Figure 5C,D).

Discussion

Despite  significant  recent  advancements  in  treatment
strategies,  the  mortality  rate  associated  with  GC  remains
high,  primarily  because  of  late-stage  diagnosis  and limited
treatment  options  (17).  Although endoscopic  screening,  as
a  secondary  preventive  measure,  has  reduced  GC-related
mortality  by  40%  (18),  its  invasiveness,  high  cost,  and
limited benefits for low-risk individuals have constrained its
global  implementation  (19,20).  Given  the  high  incidence
and  mortality  rates  of  GC,  there  is  an  urgent  need  to

develop  a  convenient,  cost-effective,  and  noninvasive
method  to  increase  early  detection  efficiency.  cfDNA,
discovered  in  1948,  has  gained  widespread  attention  in
recent years for its  clinical  application in cancer diagnosis,
largely  because  of  the  high  cost,  invasiveness,  and
complexity  associated  with  tissue  biopsies  and  radiological
examinations  (21,22).  In  this  study,  we  employed  a
systematic  and  comprehensive  biomarker  discovery  and
validation  approach  to  develop  a  cfDNA  methylation
profile in plasma as a minimally invasive biomarker for GC
detection and prognosis assessment.

We conducted whole-genome bisulfite sequencing on
GC tumor tissues and corresponding NATs and identified
DMRs closely associated with GC. Notably, most DMRs
were located in promoter regions, suggesting that these
areas  may  play  a  critical  role  in  GC  initiation  and
progression through the regulation of gene expression (23).
These DMRs were particularly enriched in several cancer-
related  signalling  pathways,  such  as  calcium signalling,
cAMP  signalling,  and  neuroactive  ligand-receptor
interactions, further supporting their potential role in the
pathophysiology  of  GC  (24).  From  a  mechanistic
perspective,  this  pattern  is  consistent  with  the  classical
model  in  which  promoter  hypermethylation  drives
transcriptional silencing, a hallmark frequently observed in
GC (25).  TCGA classification  similarly  highlights  this
mechanism,  as  the  Epstein-Barr  virus  (EBV)-positive
subtype  is  characterized  by  a  CpG  island  methylator
phenotype, and the microsatellite instability (MSI) subtype
is  often  driven  by  MLH1  promoter  methylation,
underscoring the central role of promoter methylation in
GC  biology  (26).  Consistent  with  our  KEGG  results,
enrichment in calcium, cAMP/G-protein-coupled receptor
(GPCR)-cAMP response element-binding protein (CREB),
and neuroactive ligand-receptor signalling suggests that
certain  promoter-centric  DMRs  may  influence  GC
proliferation, invasion, and metastasis  through calcium-
sensing  receptor  (CaSR)/transient  receptor  potential
(TRP)-mediated Ca2+ influx and the GPCR-cAMP/protein
kinase  A (PKA)-CREB axis  (27,28).  The enrichment  of
“proteoglycans in cancer” further implies that epigenetic
regulation may modulate the tumor microenvironment and
growth  factor  availability,  both  of  which  are  known to
shape GC aggressiveness and therapeutic response (29).
Targeted  methylation  sequencing  of  plasma  cfDNA
revealed  179  DMRs consistent  with  those  identified  in
tissue samples, indicating that these DMRs possess stable
epigenetic marker characteristics across different biological
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sample  types.  Previous  studies  have  confirmed that  the
DMRs in plasma cfDNA are highly correlated with the
differential  methylation  of  CpGs  between  tumor  and
normal tissues (30), which aligns with our findings. These
results suggest that targeted bisulfite sequencing of plasma
cfDNA can be used to  effectively  detect  tumor-derived
DNA  methylation  events  in  circulating  tumor  DNA
(ctDNA).

Aberrant DNA methylation patterns are a hallmark of
many  cancers,  and  these  changes  often  occur  early  in
cancer  development.  Systematic  analyses  of  cfDNA
methylation profiles for early cancer detection are currently

under  exploration (31).  Chemi et  al.  demonstrated that
DMRs  in  plasma  cfDNA  could  predict  small  cell  lung
cancer (SCLC) with impressive accuracy, yielding a mean
area  under  the  receiver  operating  characteristic  curve
(AUROC) of 0.986 for limited-stage SCLC (n=29) and 1.0
for extensive-stage SCLC (n=49) (32). Similarly, Luo et al.
developed a cfDNA methylation-based model to predict
CRC, achieving an AUC of  0.96,  with a  sensitivity  and
specificity  of  87.9% and  89.6%,  respectively  (33).  The
PATHFINDER study reported a positive predictive value
of 38% (35 out of 92) for cancer detection in asymptomatic
individuals over 50 years old, underscoring the feasibility of
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using cfDNA for cancer screening (34). In the field of GC,
prior  studies  have reported diagnostic  models  based on
methylation markers derived from tissue or from cfDNA,
which generally show high accuracy (35,36). Building on
this literature, our study strengthens the evidence chain
from tissue to plasma. We first performed whole-genome
bisulfite sequencing in paired GC and NATs to identify
GC-specific DMRs, then confirmed 179 overlapping sites
in plasma, and finally evaluated the models in independent
multicentre  cohorts.  Using  these  sites,  we  constructed
diagnostic models based on regional methylation ratios.
The RF model using 28 DMRs achieved an AUC of 0.998
in the training cohort and 0.985 in the validation cohort.
After reduction to six DMRs, the AUCs were 0.985 and
0.988 in the training and validation cohorts, respectively.
SVM  and  LR  built  on  the  same  feature  sets  yielded
comparable  results.  The  models  maintained  stable
sensitivity and specificity across stages,  tumor locations,
and differentiation subgroups, indicating particular utility
for early detection and as a noninvasive complement for
individuals in whom traditional approaches have limited
sensitivity.  Compared  with  prior  studies,  our  approach
provides an integrated discovery and validation pipeline
from tissue discovery to plasma confirmation to external
multicenter verification and achieves comparable accuracy
with a smaller 6-DMR panel,  which is advantageous for
clinical translation. To further address potential overfitting
and assess robustness, we performed stratified 10-fold CV
repeated  10  times  in  the  training  cohort.  The  AUCs
remained consistently high with minimal variability across
repeats, supporting the stability of the models.

In addition to GC detection, we explored the potential
clinical application of cfDNA methylation in prognostic
stratification.  Previous  studies  have  shown that  cfDNA
methylation  markers  may  play  a  role  in  predicting  the
prognosis of patients with various malignancies,  such as
ovarian cancer,  CRC, and advanced biliary tract  cancer
(33,37,38). In our study, we developed an 11-DMR marker
classifier  to assess  the prognosis  of  GC patients.  These
findings indicate that cfDNA methylation markers can be
used to predict prognosis in GC patients and can serve as
independent risk factors for disease progression. Prognostic
stratification analysis could help identify patients who may
benefit  from  aggressive  treatment  and  more  frequent
monitoring.

This study has several  limitations.  First,  our research
primarily  included patient  samples  from Asian  cohorts.
Given the known genomic differences across populations,

the  generalizability  of  our  model  needs  to  be  further
investigated in larger and more diverse cohorts. Second,
the  study was  mainly  based on cross-sectional  data  and
lacked long-term follow-up of patients, limiting our ability
to assess the effectiveness of the model in predicting GC
prognosis or recurrence. Future studies should incorporate
longitudinal  follow-up  data  to  more  comprehensively
evaluate  the  model’s  predictive  ability  at  different  time
points and stages of the disease. Additionally, although the
independent test  set  achieved high AUC values for GC
prediction,  there is  a  potential  risk of  overfitting in the
model.  Therefore,  further validation in larger-scale and
more diverse populations is necessary to ensure the stability
and reliability of these models in real-world applications.
Third, patients with benign gastric diseases, precancerous
lesions, or multiple comorbidities were not included in our
training  set.  Future  studies  are  needed  to  validate  the
model in these populations to better assess its stability and
specificity in more complex clinical contexts. Finally, the
study focused on the detection and diagnosis of GC, but it
did not sufficiently explore whether the DMRs used exhibit
similar diagnostic capabilities in other types of cancer. The
lack  of  comparative  analysis  may  limit  the  model’s
specificity, and future research should include samples from
other  common  cancer  types  to  evaluate  the  broader
applicability of the DMRs and their specificity for GC.

Conclusions

Our study demonstrated the rationale and accuracy of using
cfDNA  methylation  markers  for  GC  detection  and
prognosis prediction. However, further validation in larger
and  more  diverse  populations  is  needed  to  confirm  these
findings and ensure their broader applicability.

Acknowledgements

This work was supported by National Key R&D Program
of  China  (No.  2021YFA0910100),  National  Natural
Science  Foundation  of  China  (No.  82374544,  82204828,
82422078),  Healthy  Zhejiang  One  Million  People  Cohort
(No.  K-20230085),  Program of  Zhejiang  Provincial  TCM
Sci-tech Plan (No. GZY-ZJ-KJ-230003,  No. GZY-ZJ-KJ-
23048),  and  Natural  Science  Foundation  of  Zhejiang
Province (No. LHDMY22H160008).

Author contributions

Study  concepts:  L  Yuan,  XD  Cheng;  Study  design:  XD

862 Wang et al. GC detection and prognosis via cfDNA

© Chinese Journal of Cancer Research. All rights reserved. www.cjcrcn.org Chin J Cancer Res 2025;37(5):851-864



Cheng, YY Wang, L Lian, XD Chen; Data acquisition: XH
Liu,  PC Yu,  Y Wang,  ZH Bao,  YH Xia,  KL Yin;  Quality
control  of  data  and  algorithms:  JX  Peng,  FM  Zhang,  C
Song; Data analysis and interpretation: YN Wang, L Yuan,
LY  Jin,  WY  He;  Statistical  analysis:  JX  Peng,  YY  Wang;
Manuscript  preparation:  YN  Wang,  LY  Jin,  WY  He,  JX
Peng; Manuscript editing: XD Cheng, L Yuan; Manuscript
review: YY Wang, L Lian, XD Chen. All authors read and
approved the final manuscript.

Footnote

Conflicts  of  Interest:  Jiaxi  Peng,  Fengming  Zhang,  Chun
Song, and Yuying Wang are employees of BGI Genomics.
All other authors have no conflicts of interest to declare.

References 

 Bray F, Laversanne M, Sung H, et al. Global cancer
statistics 2022: GLOBOCAN estimates of incidence
and  mortality  worldwide  for  36  cancers  in  185
countries. CA Cancer J Clin 2024;74:229-63.

1.

 Qi C, Chong X, Zhou T, et al. Clinicopathological
significance  and  immunotherapeutic  outcome  of
claudin 18. 2 expression in advanced gastric cancer: A
retrospective study. Chin J Cancer Res 2024;36:78-89.

2.

 Zeng H, Chen W, Zheng R, et al. Changing cancer
survival in China during 2003-15: a pooled analysis of
17 population-based cancer registries. Lancet Glob
Health 2018;6:e555-67.

3.

 Ito Y, Miyashiro I,  Ishikawa T, et  al.  Determinant
Factors on Differences in Survival for Gastric Cancer
Between  the  United  States  and  Japan  Using
Nationwide Databases. J Epidemiol 2021;31:241-8.

4.

 Kang MJ, Won YJ, Lee JJ, et al. Cancer statistics in
Korea: Incidence, mortality, survival, and prevalence
in 2019. Cancer Res Treat 2022;54:330-44.

5.

 Ma S, Zhou M, Xu Y, et al. Clinical application and
detection techniques of liquid biopsy in gastric cancer.
Mol Cancer 2023;22:7.

6.

 Shimada  H,  Noie  T,  Ohashi  M,  et  al.  Clinical
significance  of  serum  tumor  markers  for  gastric
cancer: a systematic review of literature by the Task
Force  of  the  Japanese  Gastric  Cancer  Association.
Gastric Cancer 2014;17:26-33.

7.

 Nikanjam M,  Kato  S,  Kurzrock  R.  Liquid  biopsy:
current  technology  and  clinical  applications.  J

8.

Hematol Oncol 2022;15:131.
 Medina JE, Dracopoli NC, Bach PB, et al. Cell-free
DNA  approaches  for  cancer  early  detection  and
interception. J Immunother Cancer 2023;11:e006013.

9.

 Chung DC, Gray DM 2nd, Singh H, et al. A cell-free
DNA blood-based test for colorectal cancer screening.
N Engl J Med 2024;390:973-83.

10.

 Liu MC, Oxnard GR, Klein EA, et al. Sensitive and
specific multi-cancer detection and localization using
methylation signatures in cell-free DNA. Ann Oncol
2020;31:745-59.

11.

 Yu P, Chen P, Wu M, et al. Multi-dimensional cell-
free  DNA-based  liquid  biopsy  for  sensitive  early
detection of gastric cancer. Genome Med 2024;16:79.

12.

 Roy S, Kanda M, Nomura S, et al. Diagnostic efficacy
of  circular  RNAs  as  noninvasive,  liquid  biopsy
biomarkers for early detection of gastric cancer. Mol
Cancer 2022;21:42.

13.

  Feng  H,  Conneely  KN,  Wu  H.  A  Bayesian
hierarchical model to detect differentially methylated
loci  from single  nucleotide  resolution  sequencing
data. Nucleic Acids Res 2014;42:e69.

14.

 Cavalcante  RG,  Sartor  MA.  annotatr:  genomic
regions in context. Bioinformatics 2017;33:2381-3.

15.

 Yu G, Wang LG, Han Y, et al. clusterProfiler: an R
package for comparing biological themes among gene
clusters. OMICS 2012;16:284-7.

16.

 Smyth EC,  Nilsson M, Grabsch HI,  et  al.  Gastric
cancer. Lancet 2020;396:635-48.

17.

 Zhang X, Li M, Chen S, et al. Endoscopic screening
in Asian countries is associated with reduced gastric
cancer  mortality:  A  meta-analysis  and  systematic
review. Gastroenterology 2018;155:347-54.e9.

18.

 Gupta N, Bansal A, Wani SB, et al. Endoscopy for
upper GI cancer screening in the general population:
a  cost-utility  analysis.  Gastrointest  Endosc  2011;
74:610-24.e2.

19.

  Saumoy  M,  Schneider  Y,  Shen  N,  et  al.  Cost
effectiveness of gastric cancer screening according to
race  and  ethnicity.  Gastroenterology  2018;155:
648-60.

20.

 Mandel P, Metais P. Nuclear acids in human blood
plasma. C R Seances Soc Biol Fil 1948;142:241-3.

21.

 Song  P,  Wu  LR,  Yan  YH,  et  al.  Limitations  and
opportunities of technologies for the analysis of cell-
free  DNA in  cancer  diagnostics.  Nat  Biomed Eng

22.

Chinese Journal of Cancer Research, Vol 37, No 5 October 2025 863

© Chinese Journal of Cancer Research. All rights reserved. www.cjcrcn.org Chin J Cancer Res 2025;37(5):851-864



2022;6:232-45.
 Patel KB, Padhya TA, Huang J, et al. Plasma cell-free
DNA methylome profiling in pre- and post-surgery
oral cavity squamous cell carcinoma. Mol Carcinog
2023;62:493-502.

23.

 Zhang  S,  Zhang  T,  Liu  H,  et  al.  Tracking  the
evolution of untreated high-intermediate/high-risk
diffuse large B-cell lymphoma by circulating tumour
DNA. Br J Haematol 2022;196:617-28.

24.

 Padmanabhan  N,  Ushijima  T,  Tan  P.  How  to
stomach  an  epigenetic  insult:  the  gastric  cancer
epigenome.  Nat  Rev  Gastroenterol  Hepatol  2017;
14:467-78.

25.

  Cancer  Genome  At las  Research  Network .
Comprehensive molecular characterization of gastric
adenocarcinoma. Nature 2014;513:202-9.

26.

 Xie R, Xu J, Xiao Y, et al. Calcium promotes human
gastric cancer via a novel coupling of calcium-sensing
receptor and TRPV4 channel. Cancer Res 2017;77:
6499-512.

27.

 Yan H, Zhang JL, Leung KT, et al. An update of G-
protein-coupled  receptor  s ignal ing  and  i t s
deregulation in gastric carcinogenesis. Cancers (Basel)
2023;15:736.

28.

 Iozzo RV, Sanderson RD. Proteoglycans in cancer
biology, tumour microenvironment and angiogenesis.
J Cell Mol Med 2011;15:1013-31.

29.

 Shen SY, Singhania R, Fehringer G, et al. Sensitive
tumour detection and classification using plasma cell-

30.

free DNA methylomes. Nature 2018;563:579-83.
 Luo  H,  Wei  W,  Ye  Z,  et  al.  Liquid  biopsy  of
methylation biomarkers  in  cell-free  DNA.  Trends
Mol Med 2021;27:482-500.

31.

 Chemi  F,  Pearce  SP,  Clipson  A,  et  al.  cfDNA
methylome profiling for detection and subtyping of
small cell lung cancers. Nat Cancer 2022;3:1260-70.

32.

 Luo H, Zhao Q,  Wei  W, et  al.  Circulating tumor
DNA  methylation  profiles  enable  early  diagnosis,
prognosis  prediction,  and  screening  for  colorectal
cancer. Sci Transl Med 2020;12:eaax7533.

33.

 Schrag  D,  Beer  TM,  McDonnell  CH  3rd,  et  al.
Blood-based  tests  for  multicancer  early  detection
(PATHFINDER): a prospective cohort study. Lancet
2023;402:1251-60.

34.

 Anderson BW, Suh YS, Choi B, et al. Detection of
gastric cancer with novel methylated DNA markers:
discovery,  tissue  validation,  and  pilot  testing  in
plasma. Clin Cancer Res 2018;24:5724-34.

35.

 Qi J, Hong B, Wang S, et al. Plasma cell-free DNA
methylome-based liquid biopsy for accurate gastric
cancer detection. Cancer Sci 2024;115:3426-38.

36.

 Liang  L,  Zhang  Y,  Li  C,  et  al.  Plasma  cfDNA
methylation markers for the detection and prognosis
of ovarian cancer. EBioMedicine 2022;83:104222.

37.

 Berchuck JE, Facchinetti F, DiToro DF, et al. The
clinical landscape of cell-free DNA alterations in 1671
patients with advanced biliary tract cancer. Ann Oncol
2022;33:1269-83.

38.

Cite this article as: Wang Y, Jin L, He W, Peng J, Yin K,
Liu X, Yu P, Wang Y, Bao Z, Xia Y, Zhang F, Song C, Yuan L,
Wang Y, Lian L, Chen X, Cheng X. Plasma cell-free DNA
methylation  markers  for  the  detection  and  prognosis  of
gastric  cancer:  A  case-control  study.  Chin  J  Cancer  Res
2025;37(5):851-864.  doi:  10.21147/j.issn.1000-9604.2025.
05.14

864 Wang et al. GC detection and prognosis via cfDNA

© Chinese Journal of Cancer Research. All rights reserved. www.cjcrcn.org Chin J Cancer Res 2025;37(5):851-864


