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Highlights

e Whole - blood mNGS increases pathogen detection (53.26% — 58.70%) and
identifies more fungi in cells (30.2% vs. 17.0%).

e Cell-layer testing captures sedimentation-prone/intracellular pathogens, reducing
missed detection and enabling comprehensive diagnosis.

o cfDNA features predict prognosis. Richness protects; diversity/SOFA are risks.

Combined SOFA -cfDNA model predicts outcomes best (AUC 0.95).
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Abstract

Objective: To evaluate the value of cell-free DNA (cfDNA) in plasma and genomic
DNA (gDNA) in nucleated cell layer of whole blood samples detected by
metagenomic next-generation sequencing (mNGS) in the diagnosis of bloodstream
infection in patiecnts with hematological diseases.

Methods: Whole blood samples collected from hematologic patients with suspected
bloodstream infections were divided into the plasma and nucleated cell layers. The
DNA of plasma and nucleated cell layers was extracted for mNGS. The pathogenic
results were compared between whole blood (plasma plus nucleated cell layers) and
plasma layer. In addition, the factors influencing the prognosis at discharge were

analyzed.
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Results: Totally 92 patients were included. The positive rate of mNGS in whole blood
was higher than those of the single plasma layer (58.70% vs. 53.26%) and the culture
layer (58.70% vs. 17.39%). The consistency of plasma and nucleated cell layers was
57.6%. The proportion of fungi detected in nucleated cell layer was higher than that in
plasma layer (30.2% vs. 17.0%). Ten patients had extra pathogens detected in whole
blood compared with the single plasma layer, and the positive rate of mNGS
increased by 10.87%. gDNA microbe reads and non-host ratios in the extra-detection
group were significantly higher than those in the non-extra detection group. cfDNA
microbe reads, non-host ratios and microbe percent showed no significant differences
between the two groups. The maximum Sequential Organ Failure Assessment (SOFA)
score and age in the death group were significantly higher, while cfDNA/gDNA
species richness was significantly lower compared with the survival group. The
maximum SOFA score and ¢fDNA Shannon diversity index were found as risk factors
for improved prognosis. The maximum SOFA score and cfDNA concentration were
combined for the diagnosis of poor prognosis at discharge, with the highest area under
the curve of 0.95.

Conclusion: Simultaneous metagenomic sequencing of plasma layer and nucleated
cell layer contributes to the detection of pathogens in patients with bloodstream
infection. cfDNA detection has a certain significance in predicting the prognosis of
patients with bloodstream infection.

Keywords: Metagenomic next-generation sequencing; Bloodstream infection; Whole

blood; cfDNA; gDNA; hematological diseases
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Introduction

Patients with hematological diseases are susceptible to infection due to long-term
immunotherapy. More than 80% of patients with hematologic malignancy develop
fever associated with agranulocytosis after at least one course of chemotherapy, and
they are likely to experience bloodstream infection, with the mortality of 7.1%-42%
[1-3]. If appropriate antibiotics are not given in time, the infection-related mortality
would be higher [4]. Although initial empirical anti-infective therapy can improve the
prognosis of patients and reduce the mortality [5], the empirical use of antibiotics can
cause bloodstream infection with pathogens difficult to culture, consequently resulting
in negative culture results [6,7]. It .is reported that about 35% of bloodstream
infections or sepsis are difficult to be identified by conventional culture methods [8].
Currently, the bloodstream infection and mortality of hematologic malignancy
patients with febrile agranulocytosis are also relatively common in China. Therefore,
it is urgently needed to seek a rapid, highly sensitive method to detect the pathogens
which are difficult to culture or negative for bloodstream infections.

Recently, serological reactions and molecular biology techniques are developing
rapidly in addition to blood culture, a golden standard for the diagnosis of pathogens
in bloodstream infection. The development and clinical application of Matrix assisted
laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS),
droplet digital polymerase chain reaction (ddPCR), gene chip, metagenomics next

generation sequencing (mNGS) and other techniques for pathogen identification
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based on nucleic acid detection have greatly improved the diagnostic efficiency of
bloodstream infection, which is conducive to improving the prognosis of patients with
bloodstream infection. It has been reported that the sensitivity of mNGS for the
detection of pathogens in plasma cell-free DNA (cfDNA) was as high as 93%, and 62
out of 166 culture-negative blood samples were detected by mNGS [9].

Nowadays, most of mNGS detection processes for blood are to centrifuge the blood
and take the supernatant to detect cfDNA, which will lead to missed detection due to
the particle precipitation of some pathogens. On the other hand, some intracellular
parasites cannot be detected in plasma cfDNA_ at some time. Consequently, we
developed a mNGS detection process of whole blood (plasma cfDNA+ nucleated cell
gDNA). The comprehensive detection of nucleic acid in the supernatant and sediment
of whole blood is expected to improve the positive rate of pathogenic microorganism
detection in blood samples; which will bring great clinical benefits for patients with
bloodstream infection. Therefore, by comparing the pathogen detection of whole
blood and plasma samples in patients with hematological diseases, we further
evaluated the wvalue of mNGS in plasma and nucleated layers in bloodstream

infection.

Methods
Study population and design
The whole blood samples were collected from patients with clinically suspected

bloodstream infections at the time of fever in Department of Medical Oncology, First
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Hospital of Shanxi Medical University. Inclusion criteria were as follows: (a)
diagnosis of hematological diseases; (b) unilateral axillary temperature > 38.3 °C or >
38.0 °C for 1 h; (c) blood collected at the time of the fever. Patients without the results
of blood culture, mNGS, and clinical information were excluded.

DNA extraction

The sterilized samples from the original containers were labeled (such as name and
original tube number). After centrifugation at 1 500 g for 15 min, all the plasma was
aspirated into 2 mL EP tubes and labeled. The suction operation was as follows: use a
1000 uL pipettor to suck the middle nucleated cell layer, and gently rotate and suck
about 200 uL along the tube wall from outside to inside into the 2 mL centrifuge tube.
Notably, the tip of pipettor was always controlled on the surface of the liquid to avoid
immersing the blood cell layer. The separated plasma and nucleated cell layers were
used for nucleic acid extraction. Then, 2 mL plasma was centrifuged at 14 000 g for
10 min (4 °C). After centrifugation, the supernatant was collected into a new 10 mL
centrifuge tube and ctDNA was extracted directly with the Apostle MiniMaxTM kit
(Apostle,A17622-ACRG-LV) without wall breaking. The precipitate from the bottom
of the tube was mixed with 200 uL of the nucleated cell layer and added to the
sequenced MP Lysing Matri E tube. 200 pL of GB lysate was added, and the MP
wall-breaking machine FastPrep-24™ 5G was shaken at 6 m/s for 120 s. Next, the MP
Lysing Matri E tube was centrifuged at 14 000g for 5 min. After centrifugation, all the
supernatant was added to a new 2 mL EP tube, and gDNA nucleic acid was extracted

using the Microsample genomic DNA extraction kit (DP316, Tiangen). The
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processing flow of the samples is shown in Fig. 1.

Library preparation and sequencing

The extracted nucleic acids were subjected to quantitative nucleic acid quality
inspection using Qubit 4.0. The qualified nucleic acids were entered into the library
construction step, and the DNA was broken to about 200 bp by enzyme digestion,
followed by end repair, A-tail addition, adapter ligation and tag labeling. Finally, the
DNA was enriched by PCR, the Agilent 4200 was used to detect the fragment size of
the library, and the Qubit 4.0 was used to check the quality of the library
concentration. Fragments and libraries with qualified concentrations were sequenced
on NextSeq 550 DX sequencers (Illumina, CA, United States) with single end >50 bp.
Bioinformatics analyses

Low-quality and short sequences (<50 bp) were removed. Fastp was used to remove
duplicated reads. Human sequences were removed using Burrows-Wheeler Alignment
with reference to human Genome (GRCh38). And remaining reads were aligned to
NCBI nt database by SNAP and considered to have potential value in detection of
microorganisms. Microbial classification and verification were performed with
Kraken2 and BLAST. All the mapped reads were processed to taxonomy annotation,
genome coverage calculation and abundance calculation with in-house scripts.
Statistical analysis

SPSS 22.0 statistical software was used for data analysis, and Graphpad Prism 8 were
used for plotting. Normally distributed data were expressed as mean = SD and

compared between groups using the ¢ test. Non-normally distributed data were
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expressed as the median [first quartile (Q1), third quartile (Q3)], and non-parametric
Mann-Whitney U test was used for comparison. The counting data were expressed as
the number of cases (percentage) [n (%)], and the data between groups were
compared by chi-square test or Fisher’s exact test. A two-tailed value of p<0.05

indicated statistical significance.

Results

Baseline information

From January to September in 2022, a total of 100 patients were enrolled, among
whom 8 were excluded due to unqualified samples and lack of clinical information.
Finally, 92 patients were included in this study. The average age of patients was 52 +
16 years. 77 patients were diagnosed with hematological tumors and 15 with other

hematological diseases. The clinical baseline data of these patients are shown in Table

The distribution and positive rate of mNGS in plasma and nucleated cell layers

The detection and relative abundance of pathogens in different types of blood diseases
are shown in Fig. 2A. The positive rate of mNGS in whole blood was higher than
those of the single plasma layer (58.70% vs. 53.26%) and the culture layer (58.70% vs.
17.39%) (Fig. 2B). The consistency of plasma and nucleated cell layers was 57.6%,
among which the positive and negative concordant rates were 16.3% and 41.3%,
respectively. The proportion of fungi detected in the nucleated cell layer was higher

than that in the plasma layer (30.2% vs.17.0%, Fig. 2C).
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Extra pathogens detected by mNGS in whole blood

Of the 92 patients, extra pathogens were detected in the whole blood of 10 cases
compared with the single plasma layer, and the positive rate of mNGS increased by
10.87%. Extra pathogens in 3 cases were verified by qPCR, and the positive rate of
pathogens proven in whole blood increased by 3.3%. Cases of extra pathogens
detected in whole blood are listed in Table 2. In the extra-detection group, gDNA
microbe reads and non-host ratio were significantly higher than those in the non-extra
detection group. There were no significant differences in the plasma cfDNA non-host
percent, microbe reads and non-host ratios between extra and non-extra detection
group (Fig. 3). Comparison of DNA indexes between culture-negative (n=16) and
culture-positive (n=73) groups further showed no statistical differences (p>0.05).
Correlation between infection severity and ¢cfDNA and gDNA detection

Patients were classified into non-agranulocytosis group (n=37) and agranulocytosis
group (n=55) according to presence or absence of agranulocytosis during
hospitalization. It could be observed that there were significant differences between
the two groups in hospital stays (18 vs. 27 d), procalcitonin (PCT, 0.35 vs. 0.89
ng/mL), high-sensitivity C reactive protein (hsCRP, 82.6 £ 66.4 vs. 124.2 = 71.9
mg/L), cfDNA species richness (defined as the count of distinct species detected) (7
vs. 11), gDNA species richness (10 vs. 20), cfDNA non-host ratio (0.02% vs. 0.04%),
and gDNA non-host ratio (0.02% vs. 0.16%)(Fig. 4).

Patients' prognosis at discharge

According to the physiological characteristics and symptoms at discharge, the patients
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were divided into the improved prognosis group (n=70) (improved symptoms upon
discharge) and poor prognosis group (n=22) (no significant changes in symptoms, or
worse or death at discharge). The distribution of hormone use (68.2% vs. 37.1%),
kidney damage (27.3% vs. 8.6%), cardiac insufficiency (36.4% vs. 10%) and
respiratory failure (27.3% vs. 1%) were statistically significant between the poor and
improved prognosis groups. The maximum SOFA score, age and PCT at discharge in
the poor prognosis group were significantly higher than those in the improved
prognosis group (Fig. SA). To further analyze the clinical characteristics between
dead (n=11) and survived (n=81) patients, we found the maximum SOFA score and
age in the dead group were significantly higher, while the cfDNA/gDNA species
richness was significantly lower compared with those in the survived group. No
significant differences were presented in non-host radios and Shannon diversity
indexes [10] (Fig. 5B).

Analysis of the prognostic factors

The factors associated with prognostic improvement at discharge were analyzed in
Table 3. The maximum SOFA score (OR=0.45, 95%CI: 0.28-0.73, p=0.01) and
cfDNA Shannon diversity index (OR=0.04, 95%CI: 0.00-0.80, p=0.04) were
significantly associated with a higher likelihood of prognostic improvement. In
contrast, cfDNA species richness (OR=1.27, 95%CI: 1.00-1.61, p=0.05) was
associated with a lower likelihood of prognostic improvement.

Evaluation of diagnostic models

The maximum SOFA score has the highest diagnostic efficiency in predicting the
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prognosis of patients(Fig. 6). The model combining the maximum SOFA score and
cfDNA concentration for diagnosing poor prognosis at discharge achieved an area
under the curve (AUC) of 0.95.

Discussion

In this study, the value of whole blood metagenomic sequencing in pathogen
diagnosis was evaluated by analyzing the pathogen detection distribution in plasma
and nucleated cell layers through metagenomic sequencing and culture in 92 patients
with hematological diseases who were suspected of bloodstream infection during
fever. In pathogen diagnosis, the metagenomic sequencing of whole blood identified
additional pathogens compared with cfDNA, especially in the detection of fungi at the
level of nucleated cells. Both ¢cfDNA and gDNA sequencing results were far superior
to culture methods. Notably, in assessing the outcome of patients, the maximum
SOFA score during hospitalization was found to be a key and highly effective
predictor of poor outcomes or death, and cfDNA might be expected to be a potential
marker.

As previously reported, the positivity rate of mNGS in cfDNA from plasma in
patients with hematologic malignancy accompanied by febrile agranulocytosis was
totally 43% and 32% except for viruses compared with 14% of blood culture [11]. In
this study, the positive rate of cfDNA detection was 53.26%, and the positive rate of
pathogens detected by mNGS based on cfDNA and gDNA was 58.7%, suggesting the
improvement of the detection rate of pathogens in blood samples. It has been reported

that the positive rate of whole blood samples was higher than that of plasma samples
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when tNGS was used to detect pathogens of infective endocarditis. However, when
the results of whole blood and plasma samples were combined, the positive rate of
pathogen diagnosis could increase to 66% [12]. In the positive detection results of
mNGS, whether in plasma layer or nucleated cell layer, the positive rate of viruses
was the first. Excluding viruses, bacteria were mostly detected in the plasma layer,
while fungi were mostly detected in the nucleated cell layer. Unfortunately, this study
did not provide guidance on drug treatment for patients because the patients' blood
was frozen, and the last testing was performed. Previous studies reported that the
plasma mNGS results led to a positive impact in 57.1% of patients by initiating
targeted therapy [13].

Increased cfDNA levels have been reported in septic patients and are indicative for
mortality associated with sepsis [14-17]. In our study, the concentration of cfDNA in
the blood of patients at the time of fever was also confirmed to have a prognostic
value in patients at discharge. Of course, SOFA score still played a key and dominant
role in evaluating the prognosis. In pediatric patients with hematological malignancy,
mNGS has been demonstrated a novel approach to determine the microbiological
etiology of fever of unknown origin, and integration of interleukin-6 can improve the
diagnostic precision of bacterial infection [18]. Species richness was significantly
decreased in patients, especially in non-survivors. However, inconsistent with other
reports [19], we found no statistical differences in Shannon diversity index between
the two groups. The possible reasons might be associated with the inconsistency in the

calculation method of Shannon diversity index and different settings of the



Journal Pre-proof

signal-generating threshold.

Recently, scholars have integrated host and pathogen metagenomic RNA and DNA
next generation sequencing of whole blood and plasma from critically ill patients to
diagnose sepsis [20]. In this study, by analyzing the human sequence of the host in
whole blood with metagenomic DNA next-generation sequencing, we further
established a model of whole blood human gene sequence for the diagnosis of
prognosis in patients with hematological diseases. Similarly, there are reports that
integrate plasma cfDNA quantity, human cfDNA fragmentation patterns, infecting
pathogens, and overall microbial composition to diagnose sepsis and predict mortality
as soon as the first day of ICU admission [19].

This study had some limitations that should be cautiously interpreted. First, the
positive rate of whole blood metagenomic sequencing was low in the overall samples,
affecting the evaluation on the diagnostic value of whole blood metagenomic
sequencing in additional pathogens. Meanwhile, this also led to a small sample size in
the extra detection group when analyzing the extra detection group and the non-extra
detection group, which may impact the statistical power. Second, the blood of
suspected patients was frozen and finally tested uniformly, leading to difficulty in
conducting prospective clinical treatment. In the future, we will conduct a prospective
study to further evaluate the value of whole blood mNGS in guiding clinical
treatment.

In summary, simultaneous metagenomic sequencing of plasma and nucleated cell

layers contributes to the detection of pathogens in patients with bloodstream infection.
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cfDNA detection has a certain significance in predicting the prognosis of patients with

bloodstream infection.

Figure legends

Fig. 1 The flow chart of metagenomic sequencing of plasma and nucleated cell layers.
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Fig. 2 Microbial detection in plasma and nucleated cell layers. A: Pathogen detection
distribution in plasma and nucleated cell layers; B: Comparison on the positive rates
of mNGS and culture in plasma, nucleated cell layer and whole blood. C: Comparison

on the distribution of pathogen species in plasma and nucleated cell layers.
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Fig. 3 Analysis of DNA indexes between whole blood extra-detection group and

non-extra detection group.
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Fig. 4 Comparison of infection severity and DNA indexes between agranulocytosis
and non-agranulocytosis groups. A. Comparison of inflammatory indexes between
agranulocytosis and non-agranulocytosis groups. B. Comparison of the number of
species detected by mNGS and non-host ratio between agranulocytosis and

non-agranulocytosis groups.
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Fig. S Comparison of patients' prognosis at discharge.
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Fig. 6 ROC in diagnosis of poor prognosis at discharge.
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Table 1 Clinical characteristics of patients (n=92)

Characteristics Value

Gender , [n(%)]

Male 47 (51.1)

Female 45 (48.9)
Age, [Years, Meantstandard] 52+16
Hypertension, [n(%)] 16 (17.4)
Diabetes, [n(%)] 13.(19.1)
Hospital stays, [Days, median (IQR)] 24(14.8,34.2)

SOFA score within 48 hours of admission [median (IQR)] 4 (3, 5)

Highest SOFA score during hospitalization [median (IQR)] 6 (5, 8)

Liver damage, [n(%)] 27(29.3)
Kidney damage, [n(%)] 12 (13.0)
Cardiac insufficiency, [n(%)] 15 (15.8)
Gastrointestinal bleeding, [n(%)] 4(4.3)
Respiratory failure, [n(%)] 7 (7.6)
Other malignant tumours, [n(%)] 6 (6.5)
Abdominal infection, [n(%)] 18 (19.6)

Classification of hematological diseases, [n(%)]

AML 37 (40.2)
ALL 12 (13.0)
MDS 10 (10.9)
MS 1(1.1)
MM 8 (8.7)
NHL 8 (8.7)
CML 1(1.1)
AA 5(5.4)

ATHA 1(1.1)
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HPS 4(4.3)
IDA 1(1.1)
ITP 1(1.1)
Undefined diagnosis 3(3.3)

Inflammatory markers on admission, [median (IQR)]

White blood cell count (* 10° /L) 0.55(0.22, 4.49)
Neutrophils count (* 10° /L) 0.13 (0.01, 2.56)
Lymphocyte count (* 10° /L) 0.33 (0.09,0.62)
Platelet count (* 10° /L) 23 (9,43)

hsCRP (mg/L) 108.21 (46.01,154.65)
PCT (ng/ml) 0.67(0.20,1.75)

Prognosis at discharge, n(%)

Improved 70
Death 11
Poor 11

Abbreviations: AML, Acute myelocytic leukemia; ALL, Acute lymphoblastic leukemia; MDS,
Myelodysplastic-syndromes; MS, Myeloid sarcoma; MM, Multiple myeloma; NHL,
Non-Hodgkinlymphoma; CML, Chronic myelognous leukemia; AA, Aplastic anemia; AIHA,
Autoimmune hemolytic anemia; HPS, Hemophagocytic syndrome; IDA, Iron Deficiency Anemia;

ITP, Primary immune thrombocytopenia.
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Table 2 Characteristics of extra pathogens detected in whole blood

Patient number gPCR validation

Extra pathogens Culture Reads Relative abundance (%) RPM
P5 Herpes simplex virus type 1~ Positive Negative 3 2.05 5
P26 Candida tropicalis Negative Negative 23 7.14 207
p27 Pseudomonas aeruginosa Unvalidated Negative 36940 43.29 140248
Unvalidated Fusobacterium
P28 Human herpesvirus 6 6 30 365
nucleatum
P35 Candida krusei Unvalidated Negative 4 2.02 170
Candida tropicalis, Negative,
P37 Negative 3,4 0.29,9.30 16, 21
Herpes simplex virus type 1~ Unvalidated
P39 Candida tropicalis Negative Negative 7 0.43 18
Positive Capnocytophaga
P49 Aspergillus flavus 507 31.85 3038
sputigena
P55 Aspergillus flavus Positive Negative 55 0.74 70
Primate erythrocyte Unvalidated
P79 Negative 17 47.22 1013

parvovirus type 1
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Table 3 Factors influencing the prognostic improvement of patients at discharge

Variables B SE. P OR 95% CI
Age -0.01 0.03 0.75 0.99 094 1.05
Respiratory failure -0.43 314 0.89 0.65 0.00 309.31
Maximum SOFA score -0.79 0.24 0.01 045 028 0.73
PCT (At discharged) -0.09 0.05 0.08 091 082 101

cfDNA Shannon diversity index -3.14 149 0.04 0.04 0.00 0.80

cfDNA species richness 024 012 005 127 1.00 161

Abbreviations: B, regression coefficient; S.E., standard error; P, p-value; OR, odds ratio; 95% CI, 95%

confidence interval.
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