Menu
Your Cart

Apostle MiniGenomics Technology

 

Overview

Apostle MiniGenomics technology is a modified extension to our flagship Apostle MiniMax technology.  Apostle MiniGenomics focuses on providing an efficient and economic solution for isolating and purifying genomic nucleic acids from a spectrum of biological medium, supporting the accurate subsequent genetic and genomic analyses.

Empowered by the Apostle MiniGenomics technology, Apostle COVID-19 RNA Extraction System is composed of an Apostle MagTouch Nucleic Acids Isolation Automation System, an Apostle MiniGenomics Viral TotalNA Isolation Fast Kit, Apostle 96-Well Deep Well Plates and Tip Combs. The system is based on magnetic nanoparticle technologies designed for fast extraction and purification of viral nucleic acids from various kinds of biological samples collected in multiple transport media. To date, our clients have processed more than 20 million swabs in various CAP/CLIA clinical labs in the United States.  It's also included in a US FDA EUA authorized SARS-CoV-2 molecular diagnostic test: Fulgent COVID-19 by RT-PCT Test.

In addition, Apostle MiniGenomics High Efficiency Urinary Tract Microbiota DNA Isolation Kit is designed for isolation of microbial DNA from urine samples. The kit offers highly efficient, reproducible recovery of high-quality bacterial DNA with high yield. The isolated DNA samples are suitable for a broad range of subsequent applications, including sequencing, PCR, etc.

Apostle MiniGenomics technology has also been used in Stool Sample Collection Kit, DNA Isolation Kit together with Sample Pretreatment Kit for Methylation Detection, for which our clients have successfully obtained CE mark.

Apostle MiniGenomics technology can be utilized in a broad spectrum of nucleic acid isolation applications from a range of biological medium, offering accuracy, efficiency, and low cost.


Applications

Apostle MiniGenomics technology has been applied in many world-class R&D studies, clinical laboratory settings, and public health response and surveillance. It has contributed significantly in the recent fight against the COVID-19 pandemic, applied in the testing services for over twenty million people.  

For a more detailed discussion, visit hereSome examples include:

Apostle MiniGenomics and MagTouch Technologies in State SARS-CoV-2 Wastewater Surveillance

Interview with Lauryn Massic, Association of Public Health Laboratories infectious disease fellow at the Nevada State Public Health Laboratory

Full interview

Lauryn Massic, Association of Public Health Laboratories infectious diseases fellow, shares how breakthrough technologies from Ceres Nanosciences and Apostle enables SARS-CoV-2 wastewater surveillance results that are efficient and accurate.

Please share with us more about your workflow and your metrics for success.

LM: Our goal in setting up our workflow was to have a turnaround time of less than one day for detection and quantification of the virus in wastewater samples. We wanted to be able to test wastewater from each community facility at least three times per week and to test the campus dorms every day of the week.

The workflow we follow in the lab starts with the use of Ceres Nanosciences’ Nanotrap Magnetic Virus Particles on the Apostle MagTouch 2000 for virus concentration from the wastewater. This is followed by RNA extraction using ThermoFisher and Apostle Bio reagents on the MagTouch 1000. We are analyzing the RNA using the Promega SARS-CoV -2 Wastewater RT-qPCR kit and are sequencing extracted RNA using Illumina short read sequencing on a MiniSeq.

How has the Apostle automation accelerated your testing capabilities?

LM: With Apostle automation, my team and I have been able to develop a method to detect and quantify SARS-CoV-2 in wastewater samples, while also having the ability to sequence viral RNA from the wastewater samples. We can accomplish the detection and quantification portion all in the span of a day, and the hands- free time of the automated process gives us the ability to complete other wastewater-related tasks.

Apostle MagTouch Technologies in SARS-CoV-2 Clinical Research

Rapid repeat infection of SARS-CoV-2 by two highly distinct delta-lineage viruses.

Andrew J. Gorzalski , Christina Boyles, Victoria Sepcic, Subhash Verma, Joel Sevinsky, Kevin Libuit, Stephanie Van Hooser, Mark W. Pandori. Diagnostic Microbiology and Infectious Disease. Volume 104, Issue 1, September 2022, 115747; https://doi.org/10.1016/j.diagmicrobio.2022.115747

An instance of sequential infection of an individual with, firstly, the Delta variant and secondly a Delta-sub-lineage has been identified. The individual was found positive for the AY.26 lineage 22 days after being found positive for the Delta [B.1.617.2] variant. The viruses associated with the cases showed dramatic genomic difference, including 31 changes that resulted in deletions or amino acid substitutions. Seven of these differences were observed in the Spike protein. The patient in question was between 30 and 35 years old and had no underlying health conditions. Though singular, this case illustrates the possibility that infection with the Delta variant may not itself be fully protective against  a population of SARS-CoV-2 variants that are becoming increasingly diverse.

Nucleic acid extractions were performed by Apostle MagTouch Nucleic Acid Extraction Automation Systems [Apostle Inc, San Jose, CA]. 

Apostle MiniGenomics and MagTouch Technologies in COVID-19 Testing

Apostle COVID-19 RNA Extraction System Applied in the Effective Detection of SARS-CoV-2

Ed. Horner S. Application Note.

The current coronavirus disease 2019 (COVID-19) pandemic started in late 2019. COVID-19 is the result of severe acute respiratory syndrome 2 (SARS-CoV-2) virus contraction. COVID-19 is often accompanied by a wide range of symptoms including fever, cough, and shortness of breath. The SARS-CoV-2 virus consists of a ~30 kb RNA genome encoding for 15 proteins, including the spike protein that enables the virus to enter host cells. The current gold standard qualitative detection method, qRT-PCR, reverse transcribes the viral RNA into cDNA, which is subsequently amplified and quantitated.

This application note illustrates the effective detection of SARS-CoV-2 using the Apostle COVID-19 Viral RNA Isolation Automation System and qRT-PCR in clinical lab settings. This system uses efficient MiniGenomics magnetic nanoparticle technology for fast extraction and purification of viral nucleic acids from various types of biological samples collected in transport media. The proficient and consistent systems provide reliable test results to individuals that contribute to COVID-19 pandemic relief.

To date, our clients have processed more than 20 million swabs in various CAP/CLIA clinical labs in the United States. 

“Apostle COVID-19 RNA Extraction System is a fast and reliable solution for SARS-CoV-2 viral RNA extraction. We look forward to continuing the collaboration with Apostle and providing high quality COVID-19 tests for our community.” commented by Harry Gao, MD, PhD, DABMG, FACMG, Lab Director and Chief Scientific Officer of Fulgent Genetics.

Included in: FDA EUA Summary: Fulgent COVID-19 by RT-PCR TEST(FULGENT THERAPEUTICS).  For In vitro Diagnostic Use. Rx Only. For use under Emergency Use Authorization (EUA) only. US FDA. April 12, 2021. 

Apostle MiniGenomics Technology in Urinary Tract Microbiota DNA Isolation

The Apostle MiniGenomics High Efficiency Urinary Tract Microbiota DNA Isolation Kit is designed for isolation of microbial DNA from urine samples. The kit uses proprietary Apostle MiniGenomics technology, offers highly efficient, reproducible recovery of high-quality bacterial DNA with high yield. The isolated DNA samples are suitable for a broad range of subsequent applications, including sequencing, PCR, etc.

The protocol is designed for 96-well plate automated on Apostle MagTouch 2000 Automation Platform. Especially for samples with extreme low dilute bacteria concentration, centrifugal and concentration pretreatment could increase the total microbial DNA product.

For urine samples with broad range of bacteria concertration (from 10^6 to10^1 cfu/mL), Apostle MiniGenomics High Efficiency Urinary Tract Microbiota DNA Isolation Kit isolates microbial DNA with steady recovery and high efficiency, and no significant PCR inhibitors remain in the DNA product. 

Apostle MiniGenomics Technology in Stool DNA Isolation and Colorectal Cancer Testing

BGI’s Three Complementary Kits of Colorectal Cancer Testing Have Been CE Marked.

BGI.  July 13, 2021

BGI Genomics announces that its Stool Sample Collection Kit, DNA Isolation Kit together with Sample Pretreatment Kit for Methylation Detection have been CE marked.

All three kits are used in conjunction with the previously CE marked Colorectal Cancer Testing Product which can detect the methylation of SDC2, ADHFE1 and PPP2R5C genes in human fecal samples.

According to the Global Cancer 2020 (GLOBOCAN) statistics, there are about 19.3 million new cases of colorectal cancer each year, accounting for 10 percent of all new cancer cases. About 935,000 colorectal cancer deaths occur each year, accounting for 9.4 percent of all cancer deaths.

So far, BGI has obtained CE mark for all four products used in the colorectal cancer detection workflow, from sample collection, DNA extraction, DNA pre-treatment to methylation detection, providing customers with reliable and standardized reagents and services.

(Note: Apostle is the Original Equipment Manufacturer or OEM for the Stool DNA Isolation Kit mentioned in this news. Apostle 's branded product is called Apostle MiniGenomics Stool Fast Kit.)


Apostle MiniGenomics Technology in Protocols for Colorectal Cancer Screening via Analysis of DNA Methylation Biomarkers

A systematic evaluation of stool DNA preparation protocols for colorectal cancer screening via analysis of DNA methylation biomarkers.

Jin et al. Clinical Chemistry and Laboratory Medicine (CCLM). 2021; 59(1): 91–99

Objectives - Colorectal cancer (CRC) screening using stool samples is now in routine use where tumor DNA methylation analysis for leading markers such as NDRG4 and SDC2 is an integral part of the test. However, processing stool samples for reproducible and efficient extraction of human genomic DNA remains a bottleneck for further research into better biomarkers and assays.

Methods - We systematically evaluated several factors involved in the processing of stool samples and extraction of DNA. These factors include: stool processing (solid and homogenized samples), preparation of DNA from supernatant and pellets, and DNA extraction with column and magnetic beads-based methods. Furthermore, SDC2 and NDRG4 methylation levels were used to evaluate the clinical performance of the optimal protocol.

Results - The yield of total and human genomic DNA (hgDNA) was not reproducible when solid stool scraping is used, possibly due to sampling variations. More reproducible results were obtained from homogenized stool samples. Magnetic beads-based DNA extraction using the supernatant from the homogenized stool was chosen for further analysis due to better reproducibility, higher hgDNA yield, lower non-hgDNA background, and the potential for automation. With this protocol, a combination of SDC2 and NDRG4 methylation signals with a linear regression model achieved a sensitivity and specificity of 81.82 and 93.75%, respectively.

Conclusions - Through the systematic evaluation of different stool processing and DNA extraction methods, we established a reproducible protocol for analyzing tumor DNA methylation markers in stool samples for colorectal cancer screening.

(Methods section) For magnetic beads-based method, Apostle Stool gDNA Isolation Kit (APOSTLE) was used according to the manufacturer’s instructions. Either 0.2 g pellets or 0.2 mL supernatant from homogenized stool was mixed with 1 mL lysis buffer (APOSTLE) for DNA extractions.

Using Apostle MiniMax cfDNA Isolation Technology a recent clinical study in 2821 myeloid or lymphoid neoplasm patients shows that liquid biopsy using targeted NGS is reliable in detecting chromosomal structural abnomalities in myeloid neoplasms. The study supports the use of liquid biopsy for early diagnosis and monitoring of patients with myeloid neoplasms. Read article